跳转至

面试题 37. 序列化二叉树

题目描述

请实现两个函数,分别用来序列化和反序列化二叉树。

你需要设计一个算法来实现二叉树的序列化与反序列化。这里不限定你的序列 / 反序列化算法执行逻辑,你只需要保证一个二叉树可以被序列化为一个字符串并且将这个字符串反序列化为原始的树结构。

提示:输入输出格式与 LeetCode 目前使用的方式一致,详情请参阅 LeetCode 序列化二叉树的格式。你并非必须采取这种方式,你也可以采用其他的方法解决这个问题。

 

示例:

输入:root = [1,2,3,null,null,4,5]
输出:[1,2,3,null,null,4,5]

 

注意:本题与主站 297 题相同:https://leetcode.cn/problems/serialize-and-deserialize-binary-tree/

解法

方法一:层序遍历

我们可以采用层序遍历的方式对二叉树进行序列化,即从根节点开始,依次将二叉树的节点按照从上到下、从左到右的顺序加入队列中,然后将队列中的节点依次出队。如果节点不为空,则将其值加入序列化字符串中,否则加入特殊字符 #。最后将序列化字符串返回即可。

反序列化时,我们将序列化字符串按照分隔符进行切分,得到一个字符串数组,然后依次将字符串数组中的元素加入队列中。队列中的元素即为二叉树的节点,我们从队列中依次取出元素,如果元素不为 #,则将其转换为整数后作为节点的值,然后将该节点加入队列中,否则将其置为 null。最后返回根节点即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None


class Codec:
    def serialize(self, root):
        """Encodes a tree to a single string.

        :type root: TreeNode
        :rtype: str
        """
        if root is None:
            return ""
        q = deque([root])
        ans = []
        while q:
            node = q.popleft()
            if node:
                ans.append(str(node.val))
                q.append(node.left)
                q.append(node.right)
            else:
                ans.append("#")
        return ",".join(ans)

    def deserialize(self, data):
        """Decodes your encoded data to tree.

        :type data: str
        :rtype: TreeNode
        """
        if not data:
            return None
        vals = data.split(",")
        root = TreeNode(int(vals[0]))
        q = deque([root])
        i = 1
        while q:
            node = q.popleft()
            if vals[i] != "#":
                node.left = TreeNode(int(vals[i]))
                q.append(node.left)
            i += 1
            if vals[i] != "#":
                node.right = TreeNode(int(vals[i]))
                q.append(node.right)
            i += 1
        return root


# Your Codec object will be instantiated and called as such:
# codec = Codec()
# codec.deserialize(codec.serialize(root))
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Codec {

    // Encodes a tree to a single string.
    public String serialize(TreeNode root) {
        if (root == null) {
            return null;
        }
        List<String> ans = new ArrayList<>();
        Deque<TreeNode> q = new LinkedList<>();
        q.offer(root);
        while (!q.isEmpty()) {
            TreeNode node = q.poll();
            if (node != null) {
                ans.add(node.val + "");
                q.offer(node.left);
                q.offer(node.right);
            } else {
                ans.add("#");
            }
        }
        return String.join(",", ans);
    }

    // Decodes your encoded data to tree.
    public TreeNode deserialize(String data) {
        if (data == null) {
            return null;
        }
        String[] vals = data.split(",");
        int i = 0;
        TreeNode root = new TreeNode(Integer.valueOf(vals[i++]));
        Deque<TreeNode> q = new ArrayDeque<>();
        q.offer(root);
        while (!q.isEmpty()) {
            TreeNode node = q.poll();
            if (!"#".equals(vals[i])) {
                node.left = new TreeNode(Integer.valueOf(vals[i]));
                q.offer(node.left);
            }
            ++i;
            if (!"#".equals(vals[i])) {
                node.right = new TreeNode(Integer.valueOf(vals[i]));
                q.offer(node.right);
            }
            ++i;
        }
        return root;
    }
}

// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Codec {
public:
    // Encodes a tree to a single string.
    string serialize(TreeNode* root) {
        if (!root) {
            return "";
        }
        queue<TreeNode*> q{{root}};
        string ans;
        while (!q.empty()) {
            auto node = q.front();
            q.pop();
            if (node) {
                ans += to_string(node->val) + " ";
                q.push(node->left);
                q.push(node->right);
            } else {
                ans += "# ";
            }
        }
        ans.pop_back();
        return ans;
    }

    // Decodes your encoded data to tree.
    TreeNode* deserialize(string data) {
        if (data == "") {
            return nullptr;
        }
        stringstream ss(data);
        string t;
        ss >> t;
        TreeNode* root = new TreeNode(stoi(t));
        queue<TreeNode*> q{{root}};
        while (!q.empty()) {
            auto node = q.front();
            q.pop();
            ss >> t;
            if (t != "#") {
                node->left = new TreeNode(stoi(t));
                q.push(node->left);
            }
            ss >> t;
            if (t != "#") {
                node->right = new TreeNode(stoi(t));
                q.push(node->right);
            }
        }
        return root;
    }
};

// Your Codec object will be instantiated and called as such:
// Codec codec;
// codec.deserialize(codec.serialize(root));
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */

type Codec struct {
}

func Constructor() Codec {
    return Codec{}
}

// Serializes a tree to a single string.
func (this *Codec) serialize(root *TreeNode) string {
    if root == nil {
        return ""
    }
    q := []*TreeNode{root}
    ans := []string{}
    for len(q) > 0 {
        node := q[0]
        q = q[1:]
        if node != nil {
            ans = append(ans, strconv.Itoa(node.Val))
            q = append(q, node.Left)
            q = append(q, node.Right)
        } else {
            ans = append(ans, "#")
        }
    }
    return strings.Join(ans, ",")
}

// Deserializes your encoded data to tree.
func (this *Codec) deserialize(data string) *TreeNode {
    if data == "" {
        return nil
    }
    vals := strings.Split(data, ",")
    v, _ := strconv.Atoi(vals[0])
    i := 1
    root := &TreeNode{Val: v}
    q := []*TreeNode{root}
    for len(q) > 0 {
        node := q[0]
        q = q[1:]
        if x, err := strconv.Atoi(vals[i]); err == nil {
            node.Left = &TreeNode{Val: x}
            q = append(q, node.Left)
        }
        i++
        if x, err := strconv.Atoi(vals[i]); err == nil {
            node.Right = &TreeNode{Val: x}
            q = append(q, node.Right)
        }
        i++
    }
    return root
}

/**
 * Your Codec object will be instantiated and called as such:
 * ser := Constructor();
 * deser := Constructor();
 * data := ser.serialize(root);
 * ans := deser.deserialize(data);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */

/**
 * Encodes a tree to a single string.
 *
 * @param {TreeNode} root
 * @return {string}
 */
var serialize = function (root) {
    if (!root) return '[]';
    let queue = [root];
    let res = '';
    while (queue.length) {
        let node = queue.shift();
        if (node) {
            res += node.val + ',';
            queue.push(node.left);
            queue.push(node.right);
        } else {
            res += 'null' + ',';
        }
    }
    return `[${res.substring(0, res.length - 1)}]`;
};

/**
 * Decodes your encoded data to tree.
 *
 * @param {string} data
 * @return {TreeNode}
 */
var deserialize = function (data) {
    if (!data || data.length <= 2) return null;
    let arr = data.substring(1, data.length - 1).split(',');
    let root = new TreeNode(arr.shift());
    let queue = [root];
    while (queue.length) {
        let node = queue.shift();
        let leftVal = arr.shift();
        if (leftVal !== 'null') {
            node.left = new TreeNode(leftVal);
            queue.push(node.left);
        }
        let rightVal = arr.shift();
        if (rightVal !== 'null') {
            node.right = new TreeNode(rightVal);
            queue.push(node.right);
        }
    }
    return root;
};

/**
 * Your functions will be called as such:
 * deserialize(serialize(root));
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int x) { val = x; }
 * }
 */
public class Codec {
    public string serialize(TreeNode root) {
        return rserialize(root, "");
    }

    public TreeNode deserialize(string data) {
        string[] dataArray = data.Split(",");
        LinkedList<string> dataList = new LinkedList<string>(dataArray.ToList());
        return rdeserialize(dataList);
    }

    public string rserialize(TreeNode root, string str) {
        if (root == null) {
            str += "None,";
        } else {
            str += root.val.ToString() + ",";
            str = rserialize(root.left, str);
            str = rserialize(root.right, str);
        }
        return str;
    }

    public TreeNode rdeserialize(LinkedList<string> dataList) {
        if (dataList.First.Value.Equals("None")) {
            dataList.RemoveFirst();
            return null;
        }

        TreeNode root = new TreeNode(int.Parse(dataList.First.Value));
        dataList.RemoveFirst();
        root.left = rdeserialize(dataList);
        root.right = rdeserialize(dataList);

        return root;
    }
}

// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));

方法二:前序遍历

当二叉树的前中后序列不包含叶子节点时需要前中、前后、中后三种组合方式之一才能确定一颗二叉树,但当前序和后序遍历序列中包含叶子节点时,可以仅通过前序或后序遍历序列构建一颗二叉树。

在前序遍历序列化时,我们以任意特殊字符表示叶子节点,返回序列化后的字符串;反序列化时对序列化字符串根据分隔符进行切分后使用列表的第一个元素作为二叉树的根节点,然后利用列表的其他元素递归生成左右子树即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Codec {
public:
    string empty = "#";
    string sep = ",";
    // Encodes a tree to a single string.
    string serialize(TreeNode* root) {
        if (!root) return empty + sep;
        string res = to_string(root->val) + sep;
        res += serialize(root->left);
        res += serialize(root->right);
        return res;
    }

    // Decodes your encoded data to tree.
    TreeNode* deserialize(string data) {
        list<string> nodes;
        size_t pos = 0;
        string node;
        while ((pos = data.find(sep)) != string::npos) {
            node = data.substr(0, pos);
            nodes.push_back(node);
            data.erase(0, pos + sep.length());
        }
        return deserialize(nodes);
    }

    TreeNode* deserialize(list<string>& data) {
        if (data.empty()) return nullptr;
        string first = data.front();
        data.pop_front();
        if (first == empty) return nullptr;
        TreeNode* root = new TreeNode(stoi(first));
        root->left = deserialize(data);
        root->right = deserialize(data);
        return root;
    }
};

// Your Codec object will be instantiated and called as such:
// Codec codec;
// codec.deserialize(codec.serialize(root));
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */

/**
 * Encodes a tree to a single string.
 *
 * @param {TreeNode} root
 * @return {string}
 */
var serialize = function (root) {
    if (root == null) {
        return '#';
    }
    const { val, left, right } = root;
    return `${val},${serialize(left)},${serialize(right)}`;
};

/**
 * Decodes your encoded data to tree.
 *
 * @param {string} data
 * @return {TreeNode}
 */
var deserialize = function (data) {
    const vals = data.split(',');
    let index = 0;
    const dfs = () => {
        if (vals[index] == '#') {
            index++;
            return null;
        }
        const res = new TreeNode(vals[index++]);
        res.left = dfs();
        res.right = dfs();
        return res;
    };
    return dfs();
};

/**
 * Your functions will be called as such:
 * deserialize(serialize(root));
 */

方法三:后序遍历

在后序遍历序列化时,我们以任意特殊字符表示叶子节点,返回序列化后的字符串;反序列化时对序列化字符串根据分隔符进行切分后使用列表的最后一个元素作为二叉树的根节点,然后利用列表的其他元素递归生成左右子树即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Codec {
public:
    string empty = "#";
    string sep = ",";
    // Encodes a tree to a single string.
    string serialize(TreeNode* root) {
        if (!root) return empty + sep;
        string res = "";
        res += serialize(root->left);
        res += serialize(root->right);
        res += to_string(root->val) + sep;
        return res;
    }

    // Decodes your encoded data to tree.
    TreeNode* deserialize(string data) {
        vector<string> nodes;
        size_t pos = 0;
        string node;
        while ((pos = data.find(sep)) != string::npos) {
            node = data.substr(0, pos);
            nodes.push_back(node);
            data.erase(0, pos + sep.length());
        }
        return deserialize(nodes);
    }

    TreeNode* deserialize(vector<string>& nodes) {
        if (nodes.empty()) return nullptr;
        string front = nodes.back();
        nodes.pop_back();
        if (front == empty) return nullptr;
        TreeNode* root = new TreeNode(stoi(front));
        // 先构造右子树,后构造左子树
        root->right = deserialize(nodes);
        root->left = deserialize(nodes);
        return root;
    }
};

// Your Codec object will be instantiated and called as such:
// Codec codec;
// codec.deserialize(codec.serialize(root));

评论