跳转至

688. 骑士在棋盘上的概率

题目描述

在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1)

象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。

每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。

骑士继续移动,直到它走了 k 步或离开了棋盘。

返回 骑士在棋盘停止移动后仍留在棋盘上的概率

 

示例 1:

输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。

示例 2:

输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000

 

提示:

  • 1 <= n <= 25
  • 0 <= k <= 100
  • 0 <= row, column <= n - 1

解法

方法一:动态规划

我们定义 $f[h][i][j]$ 表示骑士从 $(i, j)$ 位置出发,走了 $h$ 步以后还留在棋盘上的概率。那么最终答案就是 $f[k][row][column]$。

当 $h=0$ 时,骑士一定在棋盘上,概率为 $1$,即 $f[0][i][j]=1$。

当 $h \gt 0$ 时,骑士在 $(i, j)$ 位置上的概率可以由其上一步的 $8$ 个位置上的概率转移得到,即:

$$ f[h][i][j] = \sum_{a, b} f[h - 1][a][b] \times \frac{1}{8} $$

其中 $(a, b)$ 是从 $(i, j)$ 位置可以走到的 $8$ 个位置中的一个。

最终答案即为 $f[k][row][column]$。

时间复杂度 $O(k \times n^2)$,空间复杂度 $O(k \times n^2)$。其中 $k$ 和 $n$ 分别是给定的步数和棋盘大小。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def knightProbability(self, n: int, k: int, row: int, column: int) -> float:
        f = [[[0] * n for _ in range(n)] for _ in range(k + 1)]
        for i in range(n):
            for j in range(n):
                f[0][i][j] = 1
        for h in range(1, k + 1):
            for i in range(n):
                for j in range(n):
                    for a, b in pairwise((-2, -1, 2, 1, -2, 1, 2, -1, -2)):
                        x, y = i + a, j + b
                        if 0 <= x < n and 0 <= y < n:
                            f[h][i][j] += f[h - 1][x][y] / 8
        return f[k][row][column]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
    public double knightProbability(int n, int k, int row, int column) {
        double[][][] f = new double[k + 1][n][n];
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                f[0][i][j] = 1;
            }
        }
        int[] dirs = {-2, -1, 2, 1, -2, 1, 2, -1, -2};
        for (int h = 1; h <= k; ++h) {
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < n; ++j) {
                    for (int p = 0; p < 8; ++p) {
                        int x = i + dirs[p], y = j + dirs[p + 1];
                        if (x >= 0 && x < n && y >= 0 && y < n) {
                            f[h][i][j] += f[h - 1][x][y] / 8;
                        }
                    }
                }
            }
        }
        return f[k][row][column];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    double knightProbability(int n, int k, int row, int column) {
        double f[k + 1][n][n];
        memset(f, 0, sizeof(f));
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                f[0][i][j] = 1;
            }
        }
        int dirs[9] = {-2, -1, 2, 1, -2, 1, 2, -1, -2};
        for (int h = 1; h <= k; ++h) {
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < n; ++j) {
                    for (int p = 0; p < 8; ++p) {
                        int x = i + dirs[p], y = j + dirs[p + 1];
                        if (x >= 0 && x < n && y >= 0 && y < n) {
                            f[h][i][j] += f[h - 1][x][y] / 8;
                        }
                    }
                }
            }
        }
        return f[k][row][column];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
func knightProbability(n int, k int, row int, column int) float64 {
    f := make([][][]float64, k+1)
    for h := range f {
        f[h] = make([][]float64, n)
        for i := range f[h] {
            f[h][i] = make([]float64, n)
            for j := range f[h][i] {
                f[0][i][j] = 1
            }
        }
    }
    dirs := [9]int{-2, -1, 2, 1, -2, 1, 2, -1, -2}
    for h := 1; h <= k; h++ {
        for i := 0; i < n; i++ {
            for j := 0; j < n; j++ {
                for p := 0; p < 8; p++ {
                    x, y := i+dirs[p], j+dirs[p+1]
                    if x >= 0 && x < n && y >= 0 && y < n {
                        f[h][i][j] += f[h-1][x][y] / 8
                    }
                }
            }
        }
    }
    return f[k][row][column]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function knightProbability(n: number, k: number, row: number, column: number): number {
    const f = new Array(k + 1)
        .fill(0)
        .map(() => new Array(n).fill(0).map(() => new Array(n).fill(0)));
    for (let i = 0; i < n; ++i) {
        for (let j = 0; j < n; ++j) {
            f[0][i][j] = 1;
        }
    }
    const dirs = [-2, -1, 2, 1, -2, 1, 2, -1, -2];
    for (let h = 1; h <= k; ++h) {
        for (let i = 0; i < n; ++i) {
            for (let j = 0; j < n; ++j) {
                for (let p = 0; p < 8; ++p) {
                    const x = i + dirs[p];
                    const y = j + dirs[p + 1];
                    if (x >= 0 && x < n && y >= 0 && y < n) {
                        f[h][i][j] += f[h - 1][x][y] / 8;
                    }
                }
            }
        }
    }
    return f[k][row][column];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
const DIR: [(i32, i32); 8] = [
    (-2, -1),
    (2, -1),
    (-1, -2),
    (1, -2),
    (2, 1),
    (-2, 1),
    (1, 2),
    (-1, 2),
];
const P: f64 = 1.0 / 8.0;

impl Solution {
    #[allow(dead_code)]
    pub fn knight_probability(n: i32, k: i32, row: i32, column: i32) -> f64 {
        // Here dp[i][j][k] represents through `i` steps, the probability that the knight stays on the board
        // Starts from row: `j`, column: `k`
        let mut dp: Vec<Vec<Vec<f64>>> =
            vec![vec![vec![0 as f64; n as usize]; n as usize]; k as usize + 1];

        // Initialize the dp vector, since dp[0][j][k] should be 1
        for j in 0..n as usize {
            for k in 0..n as usize {
                dp[0][j][k] = 1.0;
            }
        }

        // Begin the actual dp process
        for i in 1..=k {
            for j in 0..n {
                for k in 0..n {
                    for (dx, dy) in DIR {
                        let x = j + dx;
                        let y = k + dy;
                        if Self::check_bounds(x, y, n, n) {
                            dp[i as usize][j as usize][k as usize] +=
                                P * dp[(i as usize) - 1][x as usize][y as usize];
                        }
                    }
                }
            }
        }

        dp[k as usize][row as usize][column as usize]
    }

    #[allow(dead_code)]
    fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
        i >= 0 && i < n && j >= 0 && j < m
    }
}

评论