跳转至

面试题 08.11. 硬币

题目描述

硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)

示例1:

 输入: n = 5
 输出:2
 解释: 有两种方式可以凑成总金额:
5=5
5=1+1+1+1+1

示例2:

 输入: n = 10
 输出:4
 解释: 有四种方式可以凑成总金额:
10=10
10=5+5
10=5+1+1+1+1+1
10=1+1+1+1+1+1+1+1+1+1

说明:

注意:

你可以假设:

  • 0 <= n (总金额) <= 1000000

解法

方法一:动态规划

我们定义 $f[i][j]$ 表示只使用前 $i$ 种硬币的情况下,凑成总金额为 $j$ 的方案数。初始时 $f[0][0]=1$,其余元素都为 $0$。答案为 $f[4][n]$。

考虑 $f[i][j]$,我们可以枚举使用的第 $i$ 种硬币的个数 $k$,其中 $0 \leq k \leq j / c_i$,那么 $f[i][j]$ 就等于所有 $f[i−1][j−k \times c_i]$ 之和。由于硬币的数量是无限的,因此 $k$ 可以从 $0$ 开始取。即状态转移方程如下:

$$ f[i][j] = f[i - 1][j] + f[i - 1][j - c_i] + \cdots + f[i - 1][j - k \times c_i] $$

不妨令 $j = j - c_i$,那么上面的状态转移方程可以写成:

$$ f[i][j - c_i] = f[i - 1][j - c_i] + f[i - 1][j - 2 \times c_i] + \cdots + f[i - 1][j - k \times c_i] $$

将二式代入一式,得到:

$$ f[i][j]= \begin{cases} f[i - 1][j] + f[i][j - c_i], & j \geq c_i \ f[i - 1][j], & j < c_i \end{cases} $$

最后的答案即为 $f[4][n]$。

时间复杂度 $O(C \times n)$,空间复杂度 $O(C \times n)$,其中 $C$ 为硬币的种类数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution:
    def waysToChange(self, n: int) -> int:
        mod = 10**9 + 7
        coins = [25, 10, 5, 1]
        f = [[0] * (n + 1) for _ in range(5)]
        f[0][0] = 1
        for i, c in enumerate(coins, 1):
            for j in range(n + 1):
                f[i][j] = f[i - 1][j]
                if j >= c:
                    f[i][j] = (f[i][j] + f[i][j - c]) % mod
        return f[-1][n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution {
    public int waysToChange(int n) {
        final int mod = (int) 1e9 + 7;
        int[] coins = {25, 10, 5, 1};
        int[][] f = new int[5][n + 1];
        f[0][0] = 1;
        for (int i = 1; i <= 4; ++i) {
            for (int j = 0; j <= n; ++j) {
                f[i][j] = f[i - 1][j];
                if (j >= coins[i - 1]) {
                    f[i][j] = (f[i][j] + f[i][j - coins[i - 1]]) % mod;
                }
            }
        }
        return f[4][n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
    int waysToChange(int n) {
        const int mod = 1e9 + 7;
        vector<int> coins = {25, 10, 5, 1};
        int f[5][n + 1];
        memset(f, 0, sizeof(f));
        f[0][0] = 1;
        for (int i = 1; i <= 4; ++i) {
            for (int j = 0; j <= n; ++j) {
                f[i][j] = f[i - 1][j];
                if (j >= coins[i - 1]) {
                    f[i][j] = (f[i][j] + f[i][j - coins[i - 1]]) % mod;
                }
            }
        }
        return f[4][n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
func waysToChange(n int) int {
    const mod int = 1e9 + 7
    coins := []int{25, 10, 5, 1}
    f := make([][]int, 5)
    for i := range f {
        f[i] = make([]int, n+1)
    }
    f[0][0] = 1
    for i := 1; i <= 4; i++ {
        for j := 0; j <= n; j++ {
            f[i][j] = f[i-1][j]
            if j >= coins[i-1] {
                f[i][j] = (f[i][j] + f[i][j-coins[i-1]]) % mod
            }
        }
    }
    return f[4][n]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
function waysToChange(n: number): number {
    const mod = 10 ** 9 + 7;
    const coins: number[] = [25, 10, 5, 1];
    const f: number[][] = Array.from({ length: 5 }, () => Array(n + 1).fill(0));
    f[0][0] = 1;
    for (let i = 1; i <= 4; ++i) {
        for (let j = 0; j <= n; ++j) {
            f[i][j] = f[i - 1][j];
            if (j >= coins[i - 1]) {
                f[i][j] = (f[i][j] + f[i][j - coins[i - 1]]) % mod;
            }
        }
    }
    return f[4][n];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
    func waysToChange(_ n: Int) -> Int {
        let mod = Int(1e9 + 7)
        let coins = [25, 10, 5, 1]
        var f = Array(repeating: Array(repeating: 0, count: n + 1), count: 5)
        f[0][0] = 1

        for i in 1...4 {
            for j in 0...n {
                f[i][j] = f[i - 1][j]
                if j >= coins[i - 1] {
                    f[i][j] = (f[i][j] + f[i][j - coins[i - 1]]) % mod
                }
            }
        }
        return f[4][n]
    }
}

方法二:动态规划(空间优化)

我们注意到,$f[i][j]$ 的计算只与 $f[i−1][..]$ 有关,因此我们可以去掉第一维,将空间复杂度优化到 $O(n)$。

1
2
3
4
5
6
7
8
9
class Solution:
    def waysToChange(self, n: int) -> int:
        mod = 10**9 + 7
        coins = [25, 10, 5, 1]
        f = [1] + [0] * n
        for c in coins:
            for j in range(c, n + 1):
                f[j] = (f[j] + f[j - c]) % mod
        return f[n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
    public int waysToChange(int n) {
        final int mod = (int) 1e9 + 7;
        int[] coins = {25, 10, 5, 1};
        int[] f = new int[n + 1];
        f[0] = 1;
        for (int c : coins) {
            for (int j = c; j <= n; ++j) {
                f[j] = (f[j] + f[j - c]) % mod;
            }
        }
        return f[n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
public:
    int waysToChange(int n) {
        const int mod = 1e9 + 7;
        vector<int> coins = {25, 10, 5, 1};
        int f[n + 1];
        memset(f, 0, sizeof(f));
        f[0] = 1;
        for (int c : coins) {
            for (int j = c; j <= n; ++j) {
                f[j] = (f[j] + f[j - c]) % mod;
            }
        }
        return f[n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
func waysToChange(n int) int {
    const mod int = 1e9 + 7
    coins := []int{25, 10, 5, 1}
    f := make([]int, n+1)
    f[0] = 1
    for _, c := range coins {
        for j := c; j <= n; j++ {
            f[j] = (f[j] + f[j-c]) % mod
        }
    }
    return f[n]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function waysToChange(n: number): number {
    const mod = 10 ** 9 + 7;
    const coins: number[] = [25, 10, 5, 1];
    const f: number[] = new Array(n + 1).fill(0);
    f[0] = 1;
    for (const c of coins) {
        for (let i = c; i <= n; ++i) {
            f[i] = (f[i] + f[i - c]) % mod;
        }
    }
    return f[n];
}

评论