跳转至

590. N 叉树的后序遍历

题目描述

给定一个 n 叉树的根节点 root ,返回 其节点值的 后序遍历

n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。

 

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:[5,6,3,2,4,1]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[2,6,14,11,7,3,12,8,4,13,9,10,5,1]

 

提示:

  • 节点总数在范围 [0, 104]
  • 0 <= Node.val <= 104
  • n 叉树的高度小于或等于 1000

 

进阶:递归法很简单,你可以使用迭代法完成此题吗?

解法

方法一:递归

我们可以递归地遍历整棵树。对于每个节点,先对该节点的每个子节点递归地调用函数,然后将节点的值加入答案。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        def dfs(root):
            if root is None:
                return
            for child in root.children:
                dfs(child)
            ans.append(root.val)

        ans = []
        dfs(root)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    private List<Integer> ans = new ArrayList<>();

    public List<Integer> postorder(Node root) {
        dfs(root);
        return ans;
    }

    private void dfs(Node root) {
        if (root == null) {
            return;
        }
        for (Node child : root.children) {
            dfs(child);
        }
        ans.add(root.val);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        function<void(Node*)> dfs = [&](Node* root) {
            if (!root) {
                return;
            }
            for (auto& child : root->children) {
                dfs(child);
            }
            ans.push_back(root->val);
        };
        dfs(root);
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func postorder(root *Node) (ans []int) {
    var dfs func(*Node)
    dfs = func(root *Node) {
        if root == nil {
            return
        }
        for _, child := range root.Children {
            dfs(child)
        }
        ans = append(ans, root.Val)
    }
    dfs(root)
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * Definition for node.
 * class Node {
 *     val: number
 *     children: Node[]
 *     constructor(val?: number) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.children = []
 *     }
 * }
 */

function postorder(root: Node | null): number[] {
    const ans: number[] = [];
    const dfs = (root: Node | null) => {
        if (!root) {
            return;
        }
        for (const child of root.children) {
            dfs(child);
        }
        ans.push(root.val);
    };
    dfs(root);
    return ans;
}

方法二:迭代(栈实现)

我们也可以用迭代的方法来解决这个问题。

我们使用一个栈来帮助我们得到后序遍历,我们首先把根节点入栈,因为后序遍历是左子树、右子树、根节点,栈的特点是先进后出,所以我们先把节点的值加入答案,然后对该节点的每个子节点按照从左到右的顺序依次入栈,这样可以得到根节点、右子树、左子树的遍历结果。最后把答案反转即可得到后序遍历的结果。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        ans = []
        if root is None:
            return ans
        stk = [root]
        while stk:
            node = stk.pop()
            ans.append(node.val)
            for child in node.children:
                stk.append(child)
        return ans[::-1]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List<Integer> postorder(Node root) {
        LinkedList<Integer> ans = new LinkedList<>();
        if (root == null) {
            return ans;
        }
        Deque<Node> stk = new ArrayDeque<>();
        stk.offer(root);
        while (!stk.isEmpty()) {
            root = stk.pollLast();
            ans.addFirst(root.val);
            for (Node child : root.children) {
                stk.offer(child);
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        if (!root) {
            return ans;
        }
        stack<Node*> stk{{root}};
        while (!stk.empty()) {
            root = stk.top();
            ans.push_back(root->val);
            stk.pop();
            for (Node* child : root->children) {
                stk.push(child);
            }
        }
        reverse(ans.begin(), ans.end());
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func postorder(root *Node) []int {
    var ans []int
    if root == nil {
        return ans
    }
    stk := []*Node{root}
    for len(stk) > 0 {
        root = stk[len(stk)-1]
        stk = stk[:len(stk)-1]
        ans = append([]int{root.Val}, ans...)
        for _, child := range root.Children {
            stk = append(stk, child)
        }
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
 * Definition for node.
 * class Node {
 *     val: number
 *     children: Node[]
 *     constructor(val?: number) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.children = []
 *     }
 * }
 */

function postorder(root: Node | null): number[] {
    const ans: number[] = [];
    if (!root) {
        return ans;
    }
    const stk: Node[] = [root];
    while (stk.length) {
        const { val, children } = stk.pop()!;
        ans.push(val);
        stk.push(...children);
    }
    return ans.reverse();
}

评论