跳转至

2236. 判断根结点是否等于子结点之和

题目描述

给你一个 二叉树 的根结点 root,该二叉树由恰好 3 个结点组成:根结点、左子结点和右子结点。

如果根结点值等于两个子结点值之和,返回 true ,否则返回 false

 

示例 1:

输入:root = [10,4,6]
输出:true
解释:根结点、左子结点和右子结点的值分别是 10 、4 和 6 。
由于 10 等于 4 + 6 ,因此返回 true 。

示例 2:

输入:root = [5,3,1]
输出:false
解释:根结点、左子结点和右子结点的值分别是 5 、3 和 1 。
由于 5 不等于 3 + 1 ,因此返回 false 。

 

提示:

  • 树只包含根结点、左子结点和右子结点
  • -100 <= Node.val <= 100

解法

方法一:直接判断

我们直接判断根节点的值是否等于左右子节点的值之和即可。

时间复杂度 $O(1)$,空间复杂度 $O(1)$。

1
2
3
4
5
6
7
8
9
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def checkTree(self, root: Optional[TreeNode]) -> bool:
        return root.val == root.left.val + root.right.val
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean checkTree(TreeNode root) {
        return root.val == root.left.val + root.right.val;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool checkTree(TreeNode* root) {
        return root->val == root->left->val + root->right->val;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func checkTree(root *TreeNode) bool {
    return root.Val == root.Left.Val+root.Right.Val
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function checkTree(root: TreeNode | null): boolean {
    return root.val === root.left.val + root.right.val;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn check_tree(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
        let node = root.as_ref().unwrap().borrow();
        let left = node.left.as_ref().unwrap().borrow().val;
        let right = node.right.as_ref().unwrap().borrow().val;
        node.val == left + right
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

bool checkTree(struct TreeNode* root) {
    return root->val == root->left->val + root->right->val;
}

评论