Description
Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists). Return a array containing all the linked lists.
Example:
Input: [1,2,3,4,5,null,7,8]
1
/ \
2 3
/ \ \
4 5 7
/
8
Output: [[1],[2,3],[4,5,7],[8]]
Solutions
Solution 1: BFS Level Order Traversal
We can use the BFS level order traversal method. For each level, we store the values of the current level's nodes into a list, and then add the list to the result array.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the number of nodes in the binary tree.
Python3 Java C++ Go TypeScript Rust Swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution :
def listOfDepth ( self , tree : TreeNode ) -> List [ ListNode ]:
ans = []
q = deque ([ tree ])
while q :
dummy = cur = ListNode ( 0 )
for _ in range ( len ( q )):
node = q . popleft ()
cur . next = ListNode ( node . val )
cur = cur . next
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
ans . append ( dummy . next )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode [] listOfDepth ( TreeNode tree ) {
List < ListNode > ans = new ArrayList <> ();
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( tree );
while ( ! q . isEmpty ()) {
ListNode dummy = new ListNode ( 0 );
ListNode cur = dummy ;
for ( int k = q . size (); k > 0 ; -- k ) {
TreeNode node = q . poll ();
cur . next = new ListNode ( node . val );
cur = cur . next ;
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
ans . add ( dummy . next );
}
return ans . toArray ( new ListNode [ 0 ] );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public :
vector < ListNode *> listOfDepth ( TreeNode * tree ) {
vector < ListNode *> ans ;
queue < TreeNode *> q {{ tree }};
while ( ! q . empty ()) {
ListNode * dummy = new ListNode ( 0 );
ListNode * cur = dummy ;
for ( int k = q . size (); k ; -- k ) {
TreeNode * node = q . front ();
q . pop ();
cur -> next = new ListNode ( node -> val );
cur = cur -> next ;
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right ) {
q . push ( node -> right );
}
}
ans . push_back ( dummy -> next );
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func listOfDepth ( tree * TreeNode ) ( ans [] * ListNode ) {
q := [] * TreeNode { tree }
for len ( q ) > 0 {
dummy := & ListNode {}
cur := dummy
for k := len ( q ); k > 0 ; k -- {
node := q [ 0 ]
q = q [ 1 :]
cur . Next = & ListNode { Val : node . Val }
cur = cur . Next
if node . Left != nil {
q = append ( q , node . Left )
}
if node . Right != nil {
q = append ( q , node . Right )
}
}
ans = append ( ans , dummy . Next )
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function listOfDepth ( tree : TreeNode | null ) : Array < ListNode | null > {
const ans : Array < ListNode | null > = [];
const q : Array < TreeNode | null > = [ tree ];
while ( q . length ) {
const dummy = new ListNode ();
let cur = dummy ;
for ( let k = q . length ; k ; -- k ) {
const { val , left , right } = q . shift () ! ;
cur . next = new ListNode ( val );
cur = cur . next ;
left && q . push ( left );
right && q . push ( right );
}
ans . push ( dummy . next );
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
use std :: cell :: RefCell ;
use std :: collections :: VecDeque ;
use std :: rc :: Rc ;
impl Solution {
pub fn list_of_depth ( tree : Option < Rc < RefCell < TreeNode >>> ) -> Vec < Option < Box < ListNode >>> {
let mut res = vec! [];
if tree . is_none () {
return res ;
}
let mut q = VecDeque :: new ();
q . push_back ( tree );
while ! q . is_empty () {
let n = q . len ();
let mut demmy = Some ( Box :: new ( ListNode :: new ( 0 )));
let mut cur = & mut demmy ;
for _ in 0 .. n {
if let Some ( node ) = q . pop_front (). unwrap () {
let mut node = node . borrow_mut ();
if node . left . is_some () {
q . push_back ( node . left . take ());
}
if node . right . is_some () {
q . push_back ( node . right . take ());
}
cur . as_mut (). unwrap (). next = Some ( Box :: new ( ListNode :: new ( node . val )));
cur = & mut cur . as_mut (). unwrap (). next ;
}
}
res . push ( demmy . as_mut (). unwrap (). next . take ());
}
res
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 /* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
*
* init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* }
*/
/* class ListNode {
* var val: Int
* var next: ListNode?
*
* init(_ val: Int) {
* self.val = val
* self.next = nil
* }
* }
*/
class Solution {
func listOfDepth ( _ tree : TreeNode ?) -> [ ListNode ?] {
var ans = [ ListNode ?]()
guard let tree = tree else { return ans }
var q = [ TreeNode ]()
q . append ( tree )
while ! q . isEmpty {
let dummy = ListNode ( 0 )
var cur = dummy
for _ in 0. .< q . count {
let node = q . removeFirst ()
cur . next = ListNode ( node . val )
cur = cur . next !
if let left = node . left {
q . append ( left )
}
if let right = node . right {
q . append ( right )
}
}
ans . append ( dummy . next )
}
return ans
}
}