Description
A circus is designing a tower routine consisting of people standing atop one another's shoulders. For practical and aesthetic reasons, each person must be both shorter and lighter than the person below him or her. Given the heights and weights of each person in the circus, write a method to compute the largest possible number of people in such a tower.
Example:
Input: height = [65,70,56,75,60,68] weight = [100,150,90,190,95,110]
Output: 6
Explanation: The longest tower is length 6 and includes from top to bottom: (56,90), (60,95), (65,100), (68,110), (70,150), (75,190)
Note:
height.length == weight.length <= 10000
Solutions
Solution 1: Sorting + Discretization + Binary Indexed Tree
First, we sort all people in ascending order by height. If the heights are the same, we sort them in descending order by weight. This way, we can transform the problem into finding the longest increasing subsequence of the weight array.
The longest increasing subsequence problem can be solved using dynamic programming with a time complexity of $O(n^2)$. However, we can optimize the solution process using a Binary Indexed Tree, which reduces the time complexity to $O(n \log n)$.
The space complexity is $O(n)$, where $n$ is the number of people.
Python3 Java C++ Go Swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 class BinaryIndexedTree :
def __init__ ( self , n ):
self . n = n
self . c = [ 0 ] * ( n + 1 )
def update ( self , x , delta ):
while x <= self . n :
self . c [ x ] = max ( self . c [ x ], delta )
x += x & - x
def query ( self , x ):
s = 0
while x :
s = max ( s , self . c [ x ])
x -= x & - x
return s
class Solution :
def bestSeqAtIndex ( self , height : List [ int ], weight : List [ int ]) -> int :
arr = list ( zip ( height , weight ))
arr . sort ( key = lambda x : ( x [ 0 ], - x [ 1 ]))
alls = sorted ({ w for _ , w in arr })
m = { w : i for i , w in enumerate ( alls , 1 )}
tree = BinaryIndexedTree ( len ( m ))
ans = 1
for _ , w in arr :
x = m [ w ]
t = tree . query ( x - 1 ) + 1
ans = max ( ans , t )
tree . update ( x , t )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 class BinaryIndexedTree {
private int n ;
private int [] c ;
public BinaryIndexedTree ( int n ) {
this . n = n ;
c = new int [ n + 1 ] ;
}
public void update ( int x , int val ) {
while ( x <= n ) {
this . c [ x ] = Math . max ( this . c [ x ] , val );
x += x & - x ;
}
}
public int query ( int x ) {
int s = 0 ;
while ( x > 0 ) {
s = Math . max ( s , this . c [ x ] );
x -= x & - x ;
}
return s ;
}
}
class Solution {
public int bestSeqAtIndex ( int [] height , int [] weight ) {
int n = height . length ;
int [][] arr = new int [ n ][ 2 ] ;
for ( int i = 0 ; i < n ; ++ i ) {
arr [ i ] = new int [] { height [ i ] , weight [ i ] };
}
Arrays . sort ( arr , ( a , b ) -> a [ 0 ] == b [ 0 ] ? b [ 1 ] - a [ 1 ] : a [ 0 ] - b [ 0 ] );
Set < Integer > s = new HashSet <> ();
for ( int [] e : arr ) {
s . add ( e [ 1 ] );
}
List < Integer > alls = new ArrayList <> ( s );
Collections . sort ( alls );
Map < Integer , Integer > m = new HashMap <> ( alls . size ());
for ( int i = 0 ; i < alls . size (); ++ i ) {
m . put ( alls . get ( i ), i + 1 );
}
BinaryIndexedTree tree = new BinaryIndexedTree ( alls . size ());
int ans = 1 ;
for ( int [] e : arr ) {
int x = m . get ( e [ 1 ] );
int t = tree . query ( x - 1 ) + 1 ;
ans = Math . max ( ans , t );
tree . update ( x , t );
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 class BinaryIndexedTree {
public :
BinaryIndexedTree ( int _n )
: n ( _n )
, c ( _n + 1 ) {}
void update ( int x , int val ) {
while ( x <= n ) {
c [ x ] = max ( c [ x ], val );
x += x & - x ;
}
}
int query ( int x ) {
int s = 0 ;
while ( x > 0 ) {
s = max ( s , c [ x ]);
x -= x & - x ;
}
return s ;
}
private :
int n ;
vector < int > c ;
};
class Solution {
public :
int bestSeqAtIndex ( vector < int >& height , vector < int >& weight ) {
int n = height . size ();
vector < pair < int , int >> people ;
for ( int i = 0 ; i < n ; ++ i ) {
people . emplace_back ( height [ i ], weight [ i ]);
}
sort ( people . begin (), people . end (), []( const pair < int , int >& a , const pair < int , int >& b ) {
if ( a . first == b . first ) {
return a . second > b . second ;
}
return a . first < b . first ;
});
vector < int > alls = weight ;
sort ( alls . begin (), alls . end ());
alls . erase ( unique ( alls . begin (), alls . end ()), alls . end ());
BinaryIndexedTree tree ( alls . size ());
int ans = 1 ;
for ( auto & [ _ , w ] : people ) {
int x = lower_bound ( alls . begin (), alls . end (), w ) - alls . begin () + 1 ;
int t = tree . query ( x - 1 ) + 1 ;
ans = max ( ans , t );
tree . update ( x , t );
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 type BinaryIndexedTree struct {
n int
c [] int
}
func newBinaryIndexedTree ( n int ) * BinaryIndexedTree {
c := make ([] int , n + 1 )
return & BinaryIndexedTree { n , c }
}
func ( this * BinaryIndexedTree ) update ( x , val int ) {
for x <= this . n {
if this . c [ x ] < val {
this . c [ x ] = val
}
x += x & - x
}
}
func ( this * BinaryIndexedTree ) query ( x int ) int {
s := 0
for x > 0 {
if s < this . c [ x ] {
s = this . c [ x ]
}
x -= x & - x
}
return s
}
func bestSeqAtIndex ( height [] int , weight [] int ) int {
n := len ( height )
people := make ([][ 2 ] int , n )
s := map [ int ] bool {}
for i := range people {
people [ i ] = [ 2 ] int { height [ i ], weight [ i ]}
s [ weight [ i ]] = true
}
sort . Slice ( people , func ( i , j int ) bool {
a , b := people [ i ], people [ j ]
return a [ 0 ] < b [ 0 ] || a [ 0 ] == b [ 0 ] && a [ 1 ] > b [ 1 ]
})
alls := make ([] int , 0 , len ( s ))
for k := range s {
alls = append ( alls , k )
}
sort . Ints ( alls )
tree := newBinaryIndexedTree ( len ( alls ))
ans := 1
for _ , p := range people {
x := sort . SearchInts ( alls , p [ 1 ]) + 1
t := tree . query ( x - 1 ) + 1
ans = max ( ans , t )
tree . update ( x , t )
}
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 class BinaryIndexedTree {
private var n : Int
private var c : [ Int ]
init ( _ n : Int ) {
self . n = n
self . c = [ Int ]( repeating : 0 , count : n + 1 )
}
func update ( _ x : Int , _ val : Int ) {
var x = x
while x <= n {
c [ x ] = max ( c [ x ], val )
x += x & - x
}
}
func query ( _ x : Int ) -> Int {
var x = x
var s = 0
while x > 0 {
s = max ( s , c [ x ])
x -= x & - x
}
return s
}
}
class Solution {
func bestSeqAtIndex ( _ height : [ Int ], _ weight : [ Int ]) -> Int {
let n = height . count
var arr : [( Int , Int )] = []
for i in 0. .< n {
arr . append (( height [ i ], weight [ i ]))
}
arr . sort {
if $0 . 0 == $1 . 0 {
return $1 . 1 < $0 . 1
}
return $0 . 0 < $1 . 0
}
let weights = Set ( arr . map { $1 })
let sortedWeights = Array ( weights ). sorted ()
let m = sortedWeights . enumerated (). reduce ( into : [ Int : Int ]()) {
$0 [ $1 . element ] = $1 . offset + 1
}
let tree = BinaryIndexedTree ( sortedWeights . count )
var ans = 1
for ( _ , w ) in arr {
let x = m [ w ] !
let t = tree . query ( x - 1 ) + 1
ans = max ( ans , t )
tree . update ( x , t )
}
return ans
}
}
GitHub