08.04. Power Set
Description
Write a method to return all subsets of a set. The elements in a set are pairwise distinct.
Note: The result set should not contain duplicated subsets.
Example:
Input: nums = [1,2,3] Output: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
Solutions
Solution 1: Recursive Enumeration
We design a recursive function $dfs(u, t)$, where $u$ is the index of the current element being enumerated, and $t$ is the current subset.
For the current element with index $u$, we can choose to add it to the subset $t$, or we can choose not to add it to the subset $t$. Recursively making these two choices will yield all subsets.
The time complexity is $O(n \times 2^n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array. Each element in the array has two states, namely chosen or not chosen, for a total of $2^n$ states. Each state requires $O(n)$ time to construct the subset.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|