2435. Paths in Matrix Whose Sum Is Divisible by K
Description
You are given a 0-indexed m x n
integer matrix grid
and an integer k
. You are currently at position (0, 0)
and you want to reach position (m - 1, n - 1)
moving only down or right.
Return the number of paths where the sum of the elements on the path is divisible by k
. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: grid = [[5,2,4],[3,0,5],[0,7,2]], k = 3 Output: 2 Explanation: There are two paths where the sum of the elements on the path is divisible by k. The first path highlighted in red has a sum of 5 + 2 + 4 + 5 + 2 = 18 which is divisible by 3. The second path highlighted in blue has a sum of 5 + 3 + 0 + 5 + 2 = 15 which is divisible by 3.
Example 2:
Input: grid = [[0,0]], k = 5 Output: 1 Explanation: The path highlighted in red has a sum of 0 + 0 = 0 which is divisible by 5.
Example 3:
Input: grid = [[7,3,4,9],[2,3,6,2],[2,3,7,0]], k = 1 Output: 10 Explanation: Every integer is divisible by 1 so the sum of the elements on every possible path is divisible by k.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 5 * 104
1 <= m * n <= 5 * 104
0 <= grid[i][j] <= 100
1 <= k <= 50
Solutions
Solution 1: Memoization Search
We design a function dfs(i, j, s)
to represent the number of paths starting from (i, j)
with an initial path sum modulo $k$ equal to $s$.
For each position $(i, j)$, we can choose to move right or down, so we have:
$$ dfs(i, j, s) = dfs(i + 1, j, (s + grid[i][j]) \bmod k) + dfs(i, j + 1, (s + grid[i][j]) \bmod k) $$
The answer is dfs(0, 0, 0)
. We can use memoization search.
The time complexity is $O(m \times n \times k)$, and the space complexity is $O(m \times n \times k)$. Here, $m$ and $n$ are the number of rows and columns of the matrix, and $k$ is the given integer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|