Skip to content

528. Random Pick with Weight

Description

You are given a 0-indexed array of positive integers w where w[i] describes the weight of the ith index.

You need to implement the function pickIndex(), which randomly picks an index in the range [0, w.length - 1] (inclusive) and returns it. The probability of picking an index i is w[i] / sum(w).

  • For example, if w = [1, 3], the probability of picking index 0 is 1 / (1 + 3) = 0.25 (i.e., 25%), and the probability of picking index 1 is 3 / (1 + 3) = 0.75 (i.e., 75%).

 

Example 1:

Input
["Solution","pickIndex"]
[[[1]],[]]
Output
[null,0]

Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. The only option is to return 0 since there is only one element in w.

Example 2:

Input
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]

Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It is returning the second element (index = 1) that has a probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It is returning the first element (index = 0) that has a probability of 1/4.

Since this is a randomization problem, multiple answers are allowed.
All of the following outputs can be considered correct:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
and so on.

 

Constraints:

  • 1 <= w.length <= 104
  • 1 <= w[i] <= 105
  • pickIndex will be called at most 104 times.

Solutions

Solution 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def __init__(self, w: List[int]):
        self.s = [0]
        for c in w:
            self.s.append(self.s[-1] + c)

    def pickIndex(self) -> int:
        x = random.randint(1, self.s[-1])
        left, right = 1, len(self.s) - 1
        while left < right:
            mid = (left + right) >> 1
            if self.s[mid] >= x:
                right = mid
            else:
                left = mid + 1
        return left - 1


# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
    private int[] s;
    private Random random = new Random();

    public Solution(int[] w) {
        int n = w.length;
        s = new int[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + w[i];
        }
    }

    public int pickIndex() {
        int x = 1 + random.nextInt(s[s.length - 1]);
        int left = 1, right = s.length - 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (s[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left - 1;
    }
}

/**
 * Your Solution object will be instantiated and called as such:
 * Solution obj = new Solution(w);
 * int param_1 = obj.pickIndex();
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public:
    vector<int> s;

    Solution(vector<int>& w) {
        int n = w.size();
        s.resize(n + 1);
        for (int i = 0; i < n; ++i) s[i + 1] = s[i] + w[i];
    }

    int pickIndex() {
        int n = s.size();
        int x = 1 + rand() % s[n - 1];
        int left = 1, right = n - 1;
        while (left < right) {
            int mid = left + right >> 1;
            if (s[mid] >= x)
                right = mid;
            else
                left = mid + 1;
        }
        return left - 1;
    }
};

/**
 * Your Solution object will be instantiated and called as such:
 * Solution* obj = new Solution(w);
 * int param_1 = obj->pickIndex();
 */
 1
 2
 3
 4