Skip to content

1630. Arithmetic Subarrays

Description

A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0] for all valid i.

For example, these are arithmetic sequences:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

The following sequence is not arithmetic:

1, 1, 2, 5, 7

You are given an array of n integers, nums, and two arrays of m integers each, l and r, representing the m range queries, where the ith query is the range [l[i], r[i]]. All the arrays are 0-indexed.

Return a list of boolean elements answer, where answer[i] is true if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]] can be rearranged to form an arithmetic sequence, and false otherwise.

 

Example 1:

Input: nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
Output: [true,false,true]
Explanation:
In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence.
In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence.
In the 2nd query, the subarray is [5,9,3,7]. This can be rearranged as [3,5,7,9], which is an arithmetic sequence.

Example 2:

Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
Output: [false,true,false,false,true,true]

 

Constraints:

  • n == nums.length
  • m == l.length
  • m == r.length
  • 2 <= n <= 500
  • 1 <= m <= 500
  • 0 <= l[i] < r[i] < n
  • -105 <= nums[i] <= 105

Solutions

Solution 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution:
    def checkArithmeticSubarrays(
        self, nums: List[int], l: List[int], r: List[int]
    ) -> List[bool]:
        def check(nums, l, r):
            n = r - l + 1
            s = set(nums[l : l + n])
            a1, an = min(nums[l : l + n]), max(nums[l : l + n])
            d, mod = divmod(an - a1, n - 1)
            return mod == 0 and all((a1 + (i - 1) * d) in s for i in range(1, n))

        return [check(nums, left, right) for left, right in zip(l, r)]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
    public List<Boolean> checkArithmeticSubarrays(int[] nums, int[] l, int[] r) {
        List<Boolean> ans = new ArrayList<>();
        for (int i = 0; i < l.length; ++i) {
            ans.add(check(nums, l[i], r[i]));
        }
        return ans;
    }

    private boolean check(int[] nums, int l, int r) {
        Set<Integer> s = new HashSet<>();
        int n = r - l + 1;
        int a1 = 1 << 30, an = -a1;
        for (int i = l; i <= r; ++i) {
            s.add(nums[i]);
            a1 = Math.min(a1, nums[i]);
            an = Math.max(an, nums[i]);
        }
        if ((an - a1) % (n - 1) != 0) {
            return false;
        }
        int d = (an - a1) / (n - 1);
        for (int i = 1; i < n; ++i) {
            if (!s.contains(a1 + (i - 1) * d)) {
                return false;
            }
        }
        return true;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public:
    vector<bool> checkArithmeticSubarrays(vector<int>& nums, vector<int>& l, vector<int>& r) {
        vector<bool> ans;
        auto check = [](vector<int>& nums, int l, int r) {
            unordered_set<int> s;
            int n = r - l + 1;
            int a1