1208. Get Equal Substrings Within Budget
Description
You are given two strings s
and t
of the same length and an integer maxCost
.
You want to change s
to t
. Changing the ith
character of s
to ith
character of t
costs |s[i] - t[i]|
(i.e., the absolute difference between the ASCII values of the characters).
Return the maximum length of a substring of s
that can be changed to be the same as the corresponding substring of t
with a cost less than or equal to maxCost
. If there is no substring from s
that can be changed to its corresponding substring from t
, return 0
.
Example 1:
Input: s = "abcd", t = "bcdf", maxCost = 3 Output: 3 Explanation: "abc" of s can change to "bcd". That costs 3, so the maximum length is 3.
Example 2:
Input: s = "abcd", t = "cdef", maxCost = 3 Output: 1 Explanation: Each character in s costs 2 to change to character in t, so the maximum length is 1.
Example 3:
Input: s = "abcd", t = "acde", maxCost = 0 Output: 1 Explanation: You cannot make any change, so the maximum length is 1.
Constraints:
1 <= s.length <= 105
t.length == s.length
0 <= maxCost <= 106
s
andt
consist of only lowercase English letters.
Solutions
Solution 1: Prefix Sum + Binary Search
We can create an array $f$ of length $n + 1$, where $f[i]$ represents the sum of the absolute differences of ASCII values between the first $i$ characters of string $s$ and the first $i$ characters of string $t$. Thus, we can calculate the sum of the absolute differences of ASCII values from the $i$-th character to the $j$-th character of string $s$ by $f[j + 1] - f[i]$, where $0 \leq i \leq j < n$.
Note that the length has monotonicity, i.e., if there exists a substring of length $x$ that satisfies the condition, then a substring of length $x - 1$ must also satisfy the condition. Therefore, we can use binary search to find the maximum length.
We define a function $check(x)$, which indicates whether there exists a substring of length $x$ that satisfies the condition. In this function, we only need to enumerate all substrings of length $x$ and check whether they satisfy the condition. If there exists a substring that satisfies the condition, the function returns true
, otherwise it returns false
.
Next, we define the left boundary $l$ of binary search as $0$ and the right boundary $r$ as $n$. In each step, we let $mid = \lfloor \frac{l + r + 1}{2} \rfloor$. If the return value of $check(mid)$ is true
, we update the left boundary to $mid$, otherwise we update the right boundary to $mid - 1$. After the binary search, the left boundary we get is the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of string $s$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|