Tree
Depth-First Search
Breadth-First Search
Binary Tree
Description
Given the root
of a binary tree, construct a 0-indexed m x n
string matrix res
that represents a formatted layout of the tree. The formatted layout matrix should be constructed using the following rules:
The height of the tree is height
and the number of rows m
should be equal to height + 1
.
The number of columns n
should be equal to 2height+1 - 1
.
Place the root node in the middle of the top row (more formally, at location res[0][(n-1)/2]
).
For each node that has been placed in the matrix at position res[r][c]
, place its left child at res[r+1][c-2height-r-1 ]
and its right child at res[r+1][c+2height-r-1 ]
.
Continue this process until all the nodes in the tree have been placed.
Any empty cells should contain the empty string ""
.
Return the constructed matrix res
.
Example 1:
Input: root = [1,2]
Output:
[["","1",""],
["2","",""]]
Example 2:
Input: root = [1,2,3,null,4]
Output:
[["","","","1","","",""],
["","2","","","","3",""],
["","","4","","","",""]]
Constraints:
The number of nodes in the tree is in the range [1, 210 ]
.
-99 <= Node.val <= 99
The depth of the tree will be in the range [1, 10]
.
Solutions
Solution 1
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def printTree ( self , root : Optional [ TreeNode ]) -> List [ List [ str ]]:
def height ( root ):
if root is None :
return - 1
return 1 + max ( height ( root . left ), height ( root . right ))
def dfs ( root , r , c ):
if root is None :
return
ans [ r ][ c ] = str ( root . val )
dfs ( root . left , r + 1 , c - 2 ** ( h - r - 1 ))
dfs ( root . right , r + 1 , c + 2 ** ( h - r - 1 ))
h = height ( root )
m , n = h + 1 , 2 ** ( h + 1 ) - 1
ans = [[ "" ] * n for _ in range ( m )]
dfs ( root , 0 , ( n - 1 ) // 2 )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < List < String >> printTree ( TreeNode root ) {
int h = height ( root );
int m = h + 1 , n = ( 1 << ( h + 1 )) - 1 ;
String [][] res = new String [ m ][ n ] ;
for ( int i = 0 ; i < m ; ++ i ) {
Arrays . fill ( res [ i ] , "" );
}
dfs ( root , res , h , 0 , ( n - 1 ) / 2 );
List < List < String >> ans = new ArrayList <> ();
for ( String [] t : res ) {
ans . add ( Arrays . asList ( t ));
}
return ans ;
}
private void dfs ( TreeNode root , String [][] res , int h , int r , int c ) {
if ( root == null ) {
return ;
}
res [ r ][ c ] = String . valueOf ( root . val );
dfs ( root . left , res , h , r + 1 , c - ( 1 << ( h - r - 1 )));
dfs ( root . right , res , h , r + 1 , c + ( 1 << ( h - r - 1 )));
}
private int height ( TreeNode root ) {
if ( root == null ) {
return - 1 ;
}
return 1 + Math . max ( height ( root . left ), height ( root . right ));
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < vector < string >> printTree ( TreeNode * root ) {
int h = height ( root );
int m = h + 1 , n =