Array
Binary Search
Matrix
Prefix Sum
Description
Given a m x n
matrix mat
and an integer threshold
, return the maximum side-length of a square with a sum less than or equal to threshold
or return 0
if there is no such square .
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1
Output: 0
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 300
0 <= mat[i][j] <= 104
0 <= threshold <= 105
Solutions
Solution 1
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 class Solution :
def maxSideLength ( self , mat : List [ List [ int ]], threshold : int ) -> int :
def check ( k : int ) -> bool :
for i in range ( m - k + 1 ):
for j in range ( n - k + 1 ):
v = s [ i + k ][ j + k ] - s [ i ][ j + k ] - s [ i + k ][ j ] + s [ i ][ j ]
if v <= threshold :
return True
return False
m , n = len ( mat ), len ( mat [ 0 ])
s = [[ 0 ] * ( n + 1 ) for _ in range ( m + 1 )]
for i , row in enumerate ( mat , 1 ):
for j , x in enumerate ( row , 1 ):
s [ i ][ j ] = s [ i - 1 ][ j ] + s [ i ][ j - 1 ] - s [ i - 1 ][ j - 1 ] + x
l , r = 0 , min ( m , n )
while l < r :
mid = ( l + r + 1 ) >> 1
if check ( mid ):
l = mid
else :
r = mid - 1
return l
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 class Solution {
private int m ;
private int n ;
private int threshold ;
private int [][] s ;
public int maxSideLength ( int [][] mat , int threshold ) {
m = mat . length ;
n = mat [ 0 ] . length ;
this . threshold = threshold ;
s = new int [ m + 1 ][ n + 1 ] ;
for ( int i = 1 ; i <= m ; ++ i ) {
for ( int j = 1 ; j <= n ; ++ j ) {
s [ i ][ j ] = s [ i - 1 ][ j ] + s [ i ][ j - 1 ] - s [ i - 1 ][ j - 1 ] + mat [ i - 1 ][ j - 1 ] ;
}
}
int l = 0 , r = Math . min ( m , n );
while ( l < r ) {
int mid = ( l + r + 1 ) >> 1 ;
if ( check ( mid )) {
l = mid ;
} else {
r = mid - 1 ;
}
}
return l ;
}
private boolean check ( int k ) {
for ( int i = 0 ; i < m - k + 1 ; ++ i ) {
for ( int j = 0 ; j < n - k + 1 ; ++ j ) {
if ( s [ i + k ][ j + k ] - s [ i ][ j + k ] - s [ i + k ][ j ] + s [ i ][ j ] <= threshold ) {
return true ;
}
}
}
return false ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 class Solution {
public :
int maxSideLength ( vector < vector < int >>& mat ,