Skip to content

2482. Difference Between Ones and Zeros in Row and Column

Description

You are given a 0-indexed m x n binary matrix grid.

A 0-indexed m x n difference matrix diff is created with the following procedure:

  • Let the number of ones in the ith row be onesRowi.
  • Let the number of ones in the jth column be onesColj.
  • Let the number of zeros in the ith row be zerosRowi.
  • Let the number of zeros in the jth column be zerosColj.
  • diff[i][j] = onesRowi + onesColj - zerosRowi - zerosColj

Return the difference matrix diff.

 

Example 1:

Input: grid = [[0,1,1],[1,0,1],[0,0,1]]
Output: [[0,0,4],[0,0,4],[-2,-2,2]]
Explanation:
- diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 2 + 1 - 1 - 2 = 0 
- diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 2 + 1 - 1 - 2 = 0 
- diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 2 + 3 - 1 - 0 = 4 
- diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 2 + 1 - 1 - 2 = 0 
- diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 2 + 1 - 1 - 2 = 0 
- diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 2 + 3 - 1 - 0 = 4 
- diff[2][0] = onesRow2 + onesCol0 - zerosRow2 - zerosCol0 = 1 + 1 - 2 - 2 = -2
- diff[2][1] = onesRow2 + onesCol1 - zerosRow2 - zerosCol1 = 1 + 1 - 2 - 2 = -2
- diff[2][2] = onesRow2 + onesCol2 - zerosRow2 - zerosCol2 = 1 + 3 - 2 - 0 = 2

Example 2:

Input: grid = [[1,1,1],[1,1,1]]
Output: [[5,5,5],[5,5,5]]
Explanation:
- diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 3 + 2 - 0 - 0 = 5
- diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 3 + 2 - 0 - 0 = 5
- diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 3 + 2 - 0 - 0 = 5
- diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 3 + 2 - 0 - 0 = 5
- diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 3 + 2 - 0 - 0 = 5
- diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 3 + 2 - 0 - 0 = 5

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 105
  • 1 <= m * n <= 105
  • grid[i][j] is either 0 or 1.

Solutions

Solution 1: Simulation

We can solve this problem by simulating the process as described in the problem statement.

The time complexity is $O(m \times n)$, and if we ignore the space used by the answer, the space complexity is $O(m + n)$. Here, $m$ and $n$ are the number of rows and columns in the matrix, respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def onesMinusZeros(self, grid: List[List[int]]) -> List[List[int]]:
        m, n = len(grid), len(grid[0])
        rows = [0] * m
        cols = [0] * n
        for i, row in enumerate(grid):
            for j, v in enumerate(row):
                rows[i] += v
                cols[j] += v
        diff = [[0] * n for _ in range(m)]
        for i, r in enumerate(rows):
            for j, c in enumerate(cols):
                diff[i][j] = r + c - (n - r) - (m - c)
        return diff
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    public int[][] onesMinusZeros(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int[] rows = new int[m];
        int[] cols = new int[n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int v = grid[i][j];
                rows[i] += v;
                cols[j] += v;
            }
        }
        int[][] diff = new int[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                diff[i][j] = rows[i] + cols[j] - (n - rows[i]) - (m - cols[j]);
            }
        }
        return diff;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    vector<vector<int>> onesMinusZeros(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<int> rows(m);
        vector<int> cols(n);
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int v = grid[i][j];