2482. Difference Between Ones and Zeros in Row and Column
Description
You are given a 0-indexed m x n
binary matrix grid
.
A 0-indexed m x n
difference matrix diff
is created with the following procedure:
- Let the number of ones in the
ith
row beonesRowi
. - Let the number of ones in the
jth
column beonesColj
. - Let the number of zeros in the
ith
row bezerosRowi
. - Let the number of zeros in the
jth
column bezerosColj
. diff[i][j] = onesRowi + onesColj - zerosRowi - zerosColj
Return the difference matrix diff
.
Example 1:
Input: grid = [[0,1,1],[1,0,1],[0,0,1]] Output: [[0,0,4],[0,0,4],[-2,-2,2]] Explanation: - diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 2 + 1 - 1 - 2 = 0 - diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 2 + 1 - 1 - 2 = 0 - diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 2 + 3 - 1 - 0 = 4 - diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 2 + 1 - 1 - 2 = 0 - diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 2 + 1 - 1 - 2 = 0 - diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 2 + 3 - 1 - 0 = 4 - diff[2][0] = onesRow2 + onesCol0 - zerosRow2 - zerosCol0 = 1 + 1 - 2 - 2 = -2 - diff[2][1] = onesRow2 + onesCol1 - zerosRow2 - zerosCol1 = 1 + 1 - 2 - 2 = -2 - diff[2][2] = onesRow2 + onesCol2 - zerosRow2 - zerosCol2 = 1 + 3 - 2 - 0 = 2
Example 2:
Input: grid = [[1,1,1],[1,1,1]] Output: [[5,5,5],[5,5,5]] Explanation: - diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 3 + 2 - 0 - 0 = 5 - diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 3 + 2 - 0 - 0 = 5 - diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 3 + 2 - 0 - 0 = 5 - diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 3 + 2 - 0 - 0 = 5 - diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 3 + 2 - 0 - 0 = 5 - diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 3 + 2 - 0 - 0 = 5
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
grid[i][j]
is either0
or1
.
Solutions
Solution 1: Simulation
We can solve this problem by simulating the process as described in the problem statement.
The time complexity is $O(m \times n)$, and if we ignore the space used by the answer, the space complexity is $O(m + n)$. Here, $m$ and $n$ are the number of rows and columns in the matrix, respectively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|