1187. Make Array Strictly Increasing
Description
Given two integer arrays arr1
and arr2
, return the minimum number of operations (possibly zero) needed to make arr1
strictly increasing.
In one operation, you can choose two indices 0 <= i < arr1.length
and 0 <= j < arr2.length
and do the assignment arr1[i] = arr2[j]
.
If there is no way to make arr1
strictly increasing, return -1
.
Example 1:
Input: arr1 = [1,5,3,6,7], arr2 = [1,3,2,4] Output: 1 Explanation: Replace 5 with 2, then arr1 = [1, 2, 3, 6, 7].
Example 2:
Input: arr1 = [1,5,3,6,7], arr2 = [4,3,1] Output: 2 Explanation: Replace 5 with 3 and then replace 3 with 4. arr1 = [1, 3, 4, 6, 7].
Example 3:
Input: arr1 = [1,5,3,6,7], arr2 = [1,6,3,3] Output: -1 Explanation: You can't make arr1 strictly increasing.
Constraints:
1 <= arr1.length, arr2.length <= 2000
0 <= arr1[i], arr2[i] <= 10^9
Solutions
Solution 1: Dynamic Programming
We define $f[i]$ as the minimum number of operations to convert $arr1[0,..,i]$ into a strictly increasing array, and $arr1[i]$ is not replaced. Therefore, we set two sentinels $-\infty$ and $\infty$ at the beginning and end of $arr1$. The last number is definitely not replaced, so $f[n-1]$ is the answer. We initialize $f[0]=0$, and the rest $f[i]=\infty$.
Next, we sort the array $arr2$ and remove duplicates for easy binary search.
For $i=1,..,n-1$, we consider whether $arr1[i-1]$ is replaced. If $arr1[i-1] \lt arr1[i]$, then $f[i]$ can be transferred from $f[i-1]$, that is, $f[i] = f[i-1]$. Then, we consider the case where $arr[i-1]$ is replaced. Obviously, $arr[i-1]$ should be replaced with a number as large as possible and less than $arr[i]$. We perform a binary search in the array $arr2$ and find the first index $j$ that is greater than or equal to $arr[i]$. Then we enumerate the number of replacements in the range $k \in [1, min(i-1, j)]$. If $arr[i-k-1] \lt arr2[j-k]$, then $f[i]$ can be transferred from $f[i-k-1]$, that is, $f[i] = \min(f[i], f[i-k-1] + k)$.
Finally, if $f[n-1] \geq \infty$, it means that it cannot be converted into a strictly increasing array, return $-1$, otherwise return $f[n-1]$.
The time complexity is $(n \times (\log m + \min(m, n)))$, and the space complexity is $O(n)$. Here, $n$ is the length of $arr1$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|