494. Target Sum
Description
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
- For example, if
nums = [2, 1]
, you can add a'+'
before2
and a'-'
before1
and concatenate them to build the expression"+2-1"
.
Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3 Output: 5 Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3. -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1 Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
Solutions
Solution 1: Dynamic Programming
Let's denote the sum of all elements in the array $\textit{nums}$ as $s$, and the sum of elements to which we assign a negative sign as $x$. Therefore, the sum of elements with a positive sign is $s - x$. We have:
$$ (s - x) - x = \textit{target} \Rightarrow x = \frac{s - \textit{target}}{2} $$
Since $x \geq 0$ and $x$ must be an integer, it follows that $s \geq \textit{target}$ and $s - \textit{target}$ must be even. If these two conditions are not met, we directly return $0$.
Next, we can transform the problem into: selecting several elements from the array $\textit{nums}$ such that the sum of these elements equals $\frac{s - \textit{target}}{2}$. We are asked how many ways there are to make such a selection.
We can use dynamic programming to solve this problem. Define $f[i][j]$ as the number of ways to select several elements from the first $i$ elements of the array $\textit{nums}$ such that the sum of these elements equals $j$.
For $\textit{nums}[i - 1]$, we have two choices: to select or not to select. If we do not select $\textit{nums}[i - 1]$, then $f[i][j] = f[i - 1][j]$; if we do select $\textit{nums}[i - 1]$, then $f[i][j] = f[i - 1][j - \textit{nums}[i - 1]]$. Therefore, the state transition equation is:
$$ f[i][j] = f[i - 1][j] + f[i - 1][j - \textit{nums}[i - 1]] $$
This selection is based on the premise that $j \geq \textit{nums}[i - 1]$.
The final answer is $f[m][n]$, where $m$ is the length of the array $\textit{nums}$, and $n = \frac{s - \textit{target}}{2}$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|