Skip to content

1983. Widest Pair of Indices With Equal Range Sum πŸ”’

Description

You are given two 0-indexed binary arrays nums1 and nums2. Find the widest pair of indices (i, j) such that i <= j and nums1[i] + nums1[i+1] + ... + nums1[j] == nums2[i] + nums2[i+1] + ... + nums2[j].

The widest pair of indices is the pair with the largest distance between i and j. The distance between a pair of indices is defined as j - i + 1.

Return the distance of the widest pair of indices. If no pair of indices meets the conditions, return 0.

 

Example 1:

Input: nums1 = [1,1,0,1], nums2 = [0,1,1,0]
Output: 3
Explanation:
If i = 1 and j = 3:
nums1[1] + nums1[2] + nums1[3] = 1 + 0 + 1 = 2.
nums2[1] + nums2[2] + nums2[3] = 1 + 1 + 0 = 2.
The distance between i and j is j - i + 1 = 3 - 1 + 1 = 3.

Example 2:

Input: nums1 = [0,1], nums2 = [1,1]
Output: 1
Explanation:
If i = 1 and j = 1:
nums1[1] = 1.
nums2[1] = 1.
The distance between i and j is j - i + 1 = 1 - 1 + 1 = 1.

Example 3:

Input: nums1 = [0], nums2 = [1]
Output: 0
Explanation:
There are no pairs of indices that meet the requirements.

 

Constraints:

  • n == nums1.length == nums2.length
  • 1 <= n <= 105
  • nums1[i] is either 0 or 1.
  • nums2[i] is either 0 or 1.

Solutions

Solution 1: Prefix Sum + Hash Table

We observe that for any index pair $(i, j)$, if $nums1[i] + nums1[i+1] + ... + nums1[j] = nums2[i] + nums2[i+1] + ... + nums2[j]$, then $nums1[i] - nums2[i] + nums1[i+1] - nums2[i+1] + ... + nums1[j] - nums2[j] = 0$. If we subtract the corresponding elements of array $nums1$ and array $nums2$ to get a new array $nums$, the problem is transformed into finding the longest subarray in $nums$ such that the sum of the subarray is $0$. This can be solved using the prefix sum + hash table method.

We define a variable $s$ to represent the current prefix sum of $nums$, and use a hash table $d$ to store the first occurrence position of each prefix sum. Initially, $s = 0$ and $d[0] = -1$.

Next, we traverse each element $x$ in the array $nums$, calculate the value of $s$, and then check whether $s$ exists in the hash table. If $s$ exists in the hash table, it means that there is a subarray $nums[d[s]+1,..i]$ such that the sum of the subarray is $0$, and we update the answer to $\max(ans, i - d[s])$. Otherwise, we add the value of $s$ to the hash table, indicating that the first occurrence position of $s$ is $i$.

After the traversal, we can get the final answer.

The time complexity is $O(n)$ and the space complexity is $O(n)$, where $n$ is the length of the array $nums$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def widestPairOfIndices(self, nums1: List[int], nums2: List[int]) -> int:
        d = {0: -1}
        ans = s = 0
        for i, (a, b) in enumerate(zip(nums1, nums2)):
            s += a - b
            if s in d:
                ans = max(ans, i - d[s])
            else:
                d[s] = i
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
    public int widestPairOfIndices(int[] nums1, int[] nums2) {
        Map<Integer, Integer> d = new HashMap<>();
        d.put(0, -1);
        int n = nums1.length;
        int s = 0;
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            s += nums1[i] - nums2[i];
            if (d.containsKey(s)) {
                ans = Math.max(ans, i - d.get(s));
            } else {
                d.put(s, i);
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int widestPairOfIndices(vector<int>& nums1, vector<int>& nums2) {
        unordered_map<int, int> d;
        d[0] = -1;
        int ans = 0, s = 0;
        int n = nums1.size();
        for (int i = 0; i < n; ++i) {
            s += nums1[i] - nums2[i];
            if (d.count(s)) {
                ans = max(ans, i - d[s]);
            } else {
                d[s] = i;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
func widestPairOfIndices(nums1 []int, nums2 []int) (ans int) {
    d := map[int]int{0: -1}
    s := 0
    for i := range nums1 {
        s += nums1[i] - nums2[i]
        if j, ok := d[s]; ok {
            ans = max(ans, i-j)
        } else {
            d[s] = i
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
function widestPairOfIndices(nums1: number[], nums2: number[]): number {
    const d: