2552. Count Increasing Quadruplets
Description
Given a 0-indexed integer array nums
of size n
containing all numbers from 1
to n
, return the number of increasing quadruplets.
A quadruplet (i, j, k, l)
is increasing if:
0 <= i < j < k < l < n
, andnums[i] < nums[k] < nums[j] < nums[l]
.
Example 1:
Input: nums = [1,3,2,4,5] Output: 2 Explanation: - When i = 0, j = 1, k = 2, and l = 3, nums[i] < nums[k] < nums[j] < nums[l]. - When i = 0, j = 1, k = 2, and l = 4, nums[i] < nums[k] < nums[j] < nums[l]. There are no other quadruplets, so we return 2.
Example 2:
Input: nums = [1,2,3,4] Output: 0 Explanation: There exists only one quadruplet with i = 0, j = 1, k = 2, l = 3, but since nums[j] < nums[k], we return 0.
Constraints:
4 <= nums.length <= 4000
1 <= nums[i] <= nums.length
- All the integers of
nums
are unique.nums
is a permutation.
Solutions
Solution 1: Enumeration + Preprocessing
We can enumerate $j$ and $k$ in the quadruplet, then the problem is transformed into, for the current $j$ and $k$:
- Count how many $l$ satisfy $l > k$ and $nums[l] > nums[j]$;
- Count how many $i$ satisfy $i < j$ and $nums[i] < nums[k]$.
We can use two two-dimensional arrays $f$ and $g$ to record these two pieces of information. Where $f[j][k]$ represents how many $l$ satisfy $l > k$ and $nums[l] > nums[j]$, and $g[j][k]$ represents how many $i$ satisfy $i < j$ and $nums[i] < nums[k]$.
Therefore, the answer is the sum of all $f[j][k] \times g[j][k]$.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Where $n$ is the length of the array.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|