Skip to content

2707. Extra Characters in a String

Description

You are given a 0-indexed string s and a dictionary of words dictionary. You have to break s into one or more non-overlapping substrings such that each substring is present in dictionary. There may be some extra characters in s which are not present in any of the substrings.

Return the minimum number of extra characters left over if you break up s optimally.

 

Example 1:

Input: s = "leetscode", dictionary = ["leet","code","leetcode"]
Output: 1
Explanation: We can break s in two substrings: "leet" from index 0 to 3 and "code" from index 5 to 8. There is only 1 unused character (at index 4), so we return 1.

Example 2:

Input: s = "sayhelloworld", dictionary = ["hello","world"]
Output: 3
Explanation: We can break s in two substrings: "hello" from index 3 to 7 and "world" from index 8 to 12. The characters at indices 0, 1, 2 are not used in any substring and thus are considered as extra characters. Hence, we return 3.

 

Constraints:

  • 1 <= s.length <= 50
  • 1 <= dictionary.length <= 50
  • 1 <= dictionary[i].length <= 50
  • dictionary[i] and s consists of only lowercase English letters
  • dictionary contains distinct words

Solutions

Solution 1: Hash Table + Dynamic Programming

We can use a hash table $ss$ to record all words in the dictionary, which allows us to quickly determine whether a string is in the dictionary.

Next, we define $f[i]$ to represent the minimum number of extra characters in the first $i$ characters of string $s$, initially $f[0] = 0$.

When $i \ge 1$, the $i$th character $s[i - 1]$ can be an extra character, in which case $f[i] = f[i - 1] + 1$. If there exists an index $j \in [0, i - 1]$ such that $s[j..i)$ is in the hash table $ss$, then we can take $s[j..i)$ as a word, in which case $f[i] = f[j]$.

In summary, we can get the state transition equation:

$$ f[i] = \min { f[i - 1] + 1, \min_{j \in [0, i - 1]} f[j] } $$

where $i \ge 1$, and $j \in [0, i - 1]$ and $s[j..i)$ is in the hash table $ss$.

The final answer is $f[n]$.

The time complexity is $O(n^3 + L)$, and the space complexity is $O(n + L)$. Here, $n$ is the length of string $s$, and $L$ is the sum of the lengths of all words in the dictionary.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def minExtraChar(self, s: str, dictionary: List[str]) -> int:
        ss = set(dictionary)
        n = len(s)
        f = [0] * (n + 1)
        for i in range(1, n + 1):
            f[i] = f[i - 1] + 1
            for j in range(i):
                if s[j:i] in ss and f[j] < f[i]:
                    f[i] = f[j]
        return f[n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int minExtraChar(String s, String[] dictionary) {
        Set<String> ss = new HashSet<>();
        for (String w : dictionary) {
            ss.add(w);
        }
        int n = s.length();
        int[] f = new int[n + 1];
        f[0] = 0;
        for (int i = 1; i <= n; ++i) {
            f[i] = f[i - 1] + 1;
            for (int j = 0; j < i; ++j) {
                if (ss.contains(s.substring(j, i))) {
                    f[i] = Math.min(f[i], f[j]);
                }
            }
        }
        return f[n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int minExtraChar(string s, vector<string>& dictionary) {
        unordered_set<string> ss(dictionary.begin(), dictionary.end());
        int n = s.size();
        int f[n + 1];
        f[0] = 0;
        for (int i = 1; i <= n; ++i) {
            f[i] = f[i - 1] + 1;
            for (int j = 0; j < i; ++j) {
                if (ss.count(s.substr(j, i - j))) {
                    f[i] = min(f[i], f[j]);
                }
            }
        }
        return f[n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
func minExtraChar(s string, dictionary []string) int {
    ss := map[string]bool{}
    for _, w := range dictionary {
        ss[w] = true
    }
    n := len(s)
    f := make([]int, n+1)
    for i := 1; i <= n; i++ {
        f[i] = f[i-1] + 1
        for j := 0; j < i; j++ {
            if ss[s[j:i]] && f[j] < f[i] {
                f[i] = f[j]