1514. Path with Maximum Probability
Description
You are given an undirected weighted graph of n
nodes (0-indexed), represented by an edge list where edges[i] = [a, b]
is an undirected edge connecting the nodes a
and b
with a probability of success of traversing that edge succProb[i]
.
Given two nodes start
and end
, find the path with the maximum probability of success to go from start
to end
and return its success probability.
If there is no path from start
to end
, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2 Output: 0.25000 Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
Example 2:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2 Output: 0.30000
Example 3:
Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2 Output: 0.00000 Explanation: There is no path between 0 and 2.
Constraints:
2 <= n <= 10^4
0 <= start, end < n
start != end
0 <= a, b < n
a != b
0 <= succProb.length == edges.length <= 2*10^4
0 <= succProb[i] <= 1
- There is at most one edge between every two nodes.
Solutions
Solution 1: Heap-Optimized Dijkstra Algorithm
We can use Dijkstra's algorithm to find the shortest path, but here we modify it slightly to find the path with the maximum probability.
We use a priority queue (max-heap) $\textit{pq}$ to store the probability from the starting point to each node and the node's identifier. Initially, we set the probability of the starting point to $1$ and the probabilities of the other nodes to $0$, then add the starting point to $\textit{pq}$.
In each iteration, we take out the node $a$ with the highest probability from $\textit{pq}$ and its probability $w$. If the probability of node $a$ is already greater than $w$, we can skip this node. Otherwise, we traverse all adjacent edges $(a, b)$ of $a$. If the probability of $b$ is less than the probability of $a$ multiplied by the probability of $(a, b)$, we update the probability of $b$ and add $b$ to $\textit{pq}$.
Finally, we obtain the maximum probability from the starting point to the endpoint.
The time complexity is $O(m \times \log m)$, and the space complexity is $O(m)$. Here, $m$ is the number of edges.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|