13. Roman to Integer
Description
Roman numerals are represented by seven different symbols: I
, V
, X
, L
, C
, D
and M
.
Symbol Value I 1 V 5 X 10 L 50 C 100 D 500 M 1000
For example, 2
is written as II
in Roman numeral, just two ones added together. 12
is written as XII
, which is simply X + II
. The number 27
is written as XXVII
, which is XX + V + II
.
Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII
. Instead, the number four is written as IV
. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX
. There are six instances where subtraction is used:
I
can be placed beforeV
(5) andX
(10) to make 4 and 9.X
can be placed beforeL
(50) andC
(100) to make 40 and 90.C
can be placed beforeD
(500) andM
(1000) to make 400 and 900.
Given a roman numeral, convert it to an integer.
Example 1:
Input: s = "III" Output: 3 Explanation: III = 3.
Example 2:
Input: s = "LVIII" Output: 58 Explanation: L = 50, V= 5, III = 3.
Example 3:
Input: s = "MCMXCIV" Output: 1994 Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.
Constraints:
1 <= s.length <= 15
s
contains only the characters('I', 'V', 'X', 'L', 'C', 'D', 'M')
.- It is guaranteed that
s
is a valid roman numeral in the range[1, 3999]
.
Solutions
Solution 1: Hash Table + Simulation
First, we use a hash table $d$ to record the numerical value corresponding to each character. Then, we traverse the string $s$ from left to right. If the numerical value corresponding to the current character is less than the numerical value corresponding to the character on the right, we subtract the numerical value corresponding to the current character. Otherwise, we add the numerical value corresponding to the current character.
The time complexity is $O(n)$, and the space complexity is $O(m)$. Here, $n$ and $m$ are the length of the string $s$ and the size of the character set, respectively.
1 2 3 4 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|