2009. Minimum Number of Operations to Make Array Continuous
Description
You are given an integer array nums
. In one operation, you can replace any element in nums
with any integer.
nums
is considered continuous if both of the following conditions are fulfilled:
- All elements in
nums
are unique. - The difference between the maximum element and the minimum element in
nums
equalsnums.length - 1
.
For example, nums = [4, 2, 5, 3]
is continuous, but nums = [1, 2, 3, 5, 6]
is not continuous.
Return the minimum number of operations to make nums
continuous.
Example 1:
Input: nums = [4,2,5,3] Output: 0 Explanation: nums is already continuous.
Example 2:
Input: nums = [1,2,3,5,6] Output: 1 Explanation: One possible solution is to change the last element to 4. The resulting array is [1,2,3,5,4], which is continuous.
Example 3:
Input: nums = [1,10,100,1000] Output: 3 Explanation: One possible solution is to: - Change the second element to 2. - Change the third element to 3. - Change the fourth element to 4. The resulting array is [1,2,3,4], which is continuous.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions
Solution 1: Sorting + Deduplication + Binary Search
First, we sort the array and remove duplicates.
Then, we traverse the array, enumerating the current element $nums[i]$ as the minimum value of the consecutive array. We use binary search to find the first position $j$ that is greater than $nums[i] + n - 1$. Then, $j-i$ is the length of the consecutive array when the current element is the minimum value. We update the answer, i.e., $ans = \min(ans, n - (j - i))$.
Finally, we return $ans$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array.
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|