Skip to content

466. Count The Repetitions

Description

We define str = [s, n] as the string str which consists of the string s concatenated n times.

  • For example, str == ["abc", 3] =="abcabcabc".

We define that string s1 can be obtained from string s2 if we can remove some characters from s2 such that it becomes s1.

  • For example, s1 = "abc" can be obtained from s2 = "abdbec" based on our definition by removing the bolded underlined characters.

You are given two strings s1 and s2 and two integers n1 and n2. You have the two strings str1 = [s1, n1] and str2 = [s2, n2].

Return the maximum integer m such that str = [str2, m] can be obtained from str1.

 

Example 1:

Input: s1 = "acb", n1 = 4, s2 = "ab", n2 = 2
Output: 2

Example 2:

Input: s1 = "acb", n1 = 1, s2 = "acb", n2 = 1
Output: 1

 

Constraints:

  • 1 <= s1.length, s2.length <= 100
  • s1 and s2 consist of lowercase English letters.
  • 1 <= n1, n2 <= 106

Solutions

Solution 1: Preprocessing + Iteration

We preprocess the string $s_2$ such that for each starting position $i$, we calculate the next position $j$ and the count of $s_2$ after matching a complete $s_1$, i.e., $d[i] = (cnt, j)$, where $cnt$ represents the count of $s_2$, and $j$ represents the next position in the string $s_2$.

Next, we initialize $j=0$, and then loop $n1$ times. Each time, we add $d[j][0]$ to the answer, and then update $j=d[j][1]$.

The final answer is the count of $s_2$ that can be matched by $n1$ $s_1$, divided by $n2$.

The time complexity is $O(m \times n + n_1)$, and the space complexity is $O(n)$. Where $m$ and $n$ are the lengths of $s_1$ and $s_2$ respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def getMaxRepetitions(self, s1: str, n1: int, s2: str, n2: int) -> int:
        n = len(s2)
        d = {}
        for i in range(n):
            cnt = 0
            j = i
            for c in s1:
                if c == s2[j]:
                    j += 1
                if j == n:
                    cnt += 1
                    j = 0
            d[i] = (cnt, j)

        ans = 0
        j = 0
        for _ in range(n1):
            cnt, j = d[j]
            ans += cnt
        return ans // n2
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
    public int getMaxRepetitions(String s1, int n1, String s2, int n2) {
        int m = s1.length(), n = s2.length();
        int[][] d = new int[n][0];
        for (int i = 0; i < n; ++i) {
            int j = i;
            int cnt = 0;
            for (int k = 0; k < m; ++k) {
                if (s1.charAt(k) == s2.charAt(j)) {
                    if (++j == n) {
                        j = 0;
                        ++cnt;
                    }
                }
            }
            d[i] = new int[] {cnt, j};
        }
        int ans = 0;
        for (int j = 0; n1 > 0; --n1) {
            ans += d[j][0];
            j = d[j][1];
        }
        return ans / n2;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int getMaxRepetitions(string s1, int n1, string s2, int n2) {
        int m = s1.size(), n = s2.size();
        vector<pair<int, int>> d;
        for (int i = 0; i < n; ++i) {
            int j = i;
            int cnt = 0;
            for (int k = 0; k < m; ++k) {
                if (s1[k] == s2[j]) {
                    if (++j == n) {
                        ++cnt;
                        j = 0;
                    }
                }
            }
            d.emplace_back(cnt, j);
        }
        int ans = 0;
        for (int j = 0; n1; --n1) {
            ans += d[j].first;
            j = d[j].second;
        }
        return ans / n2;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
1