33. Search in Rotated Sorted Array
Description
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
Example 3:
Input: nums = [1], target = 0 Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
- All values of
nums
are unique. nums
is an ascending array that is possibly rotated.-104 <= target <= 104
Solutions
Solution 1: Binary Search
We use binary search to divide the array into two parts, $[left,.. mid]$ and $[mid + 1,.. right]$. At this point, we can find that one part must be sorted.
Therefore, we can determine whether $target$ is in this part based on the sorted part:
- If the elements in the range $[0,.. mid]$ form a sorted array:
- If $nums[0] \leq target \leq nums[mid]$, then our search range can be narrowed down to $[left,.. mid]$;
- Otherwise, search in $[mid + 1,.. right]$;
- If the elements in the range $[mid + 1, n - 1]$ form a sorted array:
- If $nums[mid] \lt target \leq nums[n - 1]$, then our search range can be narrowed down to $[mid + 1,.. right]$;
- Otherwise, search in $[left,.. mid]$.
The termination condition for binary search is $left \geq right$. If at the end we find that $nums[left]$ is not equal to $target$, it means that there is no element with a value of $target$ in the array, and we return $-1$. Otherwise, we return the index $left$.
The time complexity is $O(\log n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|