Skip to content

797. All Paths From Source to Target

Description

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

 

Example 1:

Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

 

Constraints:

  • n == graph.length
  • 2 <= n <= 15
  • 0 <= graph[i][j] < n
  • graph[i][j] != i (i.e., there will be no self-loops).
  • All the elements of graph[i] are unique.
  • The input graph is guaranteed to be a DAG.

Solutions

Solution 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
        n = len(graph)
        q = deque([[0]])
        ans = []
        while q:
            path = q.popleft()
            u = path[-1]
            if u == n - 1:
                ans.append(path)
                continue
            for v in graph[u]:
                q.append(path + [v])
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        int n = graph.length;
        Queue<List<Integer>> queue = new ArrayDeque<>();
        queue.offer(Arrays.asList(0));
        List<List<Integer>> ans = new ArrayList<>();
        while (!queue.isEmpty()) {
            List<Integer> path = queue.poll();
            int u = path.get(path.size() - 1);
            if (u == n - 1) {
                ans.add(path);
                continue;
            }
            for (int v : graph[u]) {
                List<Integer> next = new ArrayList<>(path);
                next.add(v);
                queue.offer(next);
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    vector<vector<int>> graph;
    vector<vector<int>> ans;

    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
        this->graph = graph;
        vector<int> path;
        path.push_back(0);
        dfs(0, path);
        return ans;
    }

    void dfs(int i, vector<int> path) {
        if (i == graph.size() - 1) {
            ans.push_back(path);
            return;
        }
        for (int j : graph[i]) {
            path.push_back(j);
            dfs(j, path);
            path.pop_back();
        }
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func allPathsSourceTarget(graph [][]int) [][]int {
    var path []int
    path = append(path, 0)
    var ans [][]int

    var dfs func(i int)
    dfs = func(i int) {
        if i == len(graph)-1 {
            ans = append(ans, append([]int(nil), path...))
            return
        }
        for _, j := range graph[i] {
            path = append(path, j)
            dfs(j)
            path = path[:len(path)-1]
        }
    }

    dfs(0)
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
impl Solution {
    fn dfs(i: usize, path: &mut Vec<i32>, res: &mut Vec<Vec<i32>>, graph: &Vec<Vec<i32>>)