Skip to content

840. Magic Squares In Grid

Description

A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.

Given a row x col grid of integers, how many 3 x 3 magic square subgrids are there?

Note: while a magic square can only contain numbers from 1 to 9, grid may contain numbers up to 15.

 

Example 1:

Input: grid = [[4,3,8,4],[9,5,1,9],[2,7,6,2]]
Output: 1
Explanation: 
The following subgrid is a 3 x 3 magic square:

while this one is not:

In total, there is only one magic square inside the given grid.

Example 2:

Input: grid = [[8]]
Output: 0

 

Constraints:

  • row == grid.length
  • col == grid[i].length
  • 1 <= row, col <= 10
  • 0 <= grid[i][j] <= 15

Solutions

Solution 1: Enumeration

We directly enumerate the top-left coordinates $(i, j)$ of each $3 \times 3$ sub-matrix, then check whether the sub-matrix satisfies the "magic square" condition. If it does, increment the answer by one. After enumeration, return the answer.

Time complexity is $O(m \times n)$, where $m$ and $n$ are the number of rows and columns of the matrix, respectively. Space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution:
    def numMagicSquaresInside(self, grid: List[List[int]]) -> int:
        def check(i: int, j: int) -> int:
            if i + 3 > m or j + 3 > n:
                return 0
            s = set()
            row = [0] * 3
            col = [0] * 3
            a = b = 0
            for x in range(i, i + 3):
                for y in range(j, j + 3):
                    v = grid[x][y]
                    if v < 1 or v > 9:
                        return 0
                    s.add(v)
                    row[x - i] += v
                    col[y - j] += v
                    if x - i == y - j:
                        a += v
                    if x - i == 2 - (y - j):
                        b += v
            if len(s) != 9 or a != b:
                return 0
            if any(x != a for x in row) or any(x != a for x in col):
                return 0
            return 1

        m, n = len(grid), len(grid[0])
        return sum(check(i, j) for i in range(m) for j in range(n))
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
    private int m;
    private int n;
    private int[][] grid;

    public int numMagicSquaresInside(int[][] grid) {
        m = grid.length;
        n = grid[0].length;
        this.grid = grid;
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans += check(i, j);
            }
        }
        return ans;
    }

    private int check(int i, int j) {
        if (i + 3 > m || j + 3 > n) {
            return 0;
        }
        int[] cnt = new int[16];
        int[] row = new int[3];
        int[] col = new int[3];
        int a = 0, b = 0;
        for (int x = i; x < i + 3; ++x) {
            for (int y = j; y < j + 3; ++y) {
                int v = grid[x][y];
                if (v < 1 || v > 9 || ++cnt[v] > 1) {
                    return 0;
                }
                row[<