Skip to content

365. Water and Jug Problem

Description

You are given two jugs with capacities x liters and y liters. You have an infinite water supply. Return whether the total amount of water in both jugs may reach target using the following operations:

  • Fill either jug completely with water.
  • Completely empty either jug.
  • Pour water from one jug into another until the receiving jug is full, or the transferring jug is empty.

 

Example 1:

Input: x = 3, y = 5, target = 4

Output: true

Explanation:

Follow these steps to reach a total of 4 liters:

  1. Fill the 5-liter jug (0, 5).
  2. Pour from the 5-liter jug into the 3-liter jug, leaving 2 liters (3, 2).
  3. Empty the 3-liter jug (0, 2).
  4. Transfer the 2 liters from the 5-liter jug to the 3-liter jug (2, 0).
  5. Fill the 5-liter jug again (2, 5).
  6. Pour from the 5-liter jug into the 3-liter jug until the 3-liter jug is full. This leaves 4 liters in the 5-liter jug (3, 4).
  7. Empty the 3-liter jug. Now, you have exactly 4 liters in the 5-liter jug (0, 4).

Reference: The Die Hard example.

Example 2:

Input: x = 2, y = 6, target = 5

Output: false

Example 3:

Input: x = 1, y = 2, target = 3

Output: true

Explanation: Fill both jugs. The total amount of water in both jugs is equal to 3 now.

 

Constraints:

  • 1 <= x, y, target <= 103

Solutions

Solution 1: DFS

Let's denote $jug1Capacity$ as $x$, $jug2Capacity$ as $y$, and $targetCapacity$ as $z$.

Next, we design a function $dfs(i, j)$, which represents whether we can get $z$ liters of water when there are $i$ liters of water in $jug1$ and $j$ liters of water in $jug2$.

The execution process of the function $dfs(i, j)$ is as follows:

  • If $(i, j)$ has been visited, return $false$.
  • If $i = z$ or $j = z$ or $i + j = z$, return $true$.
  • If we can get $z$ liters of water by filling $jug1$ or $jug2$, or emptying $jug1$ or $jug2$, return $true$.
  • If we can get $z$ liters of water by pouring water from $jug1$ into $jug2$, or pouring water from $jug2$ into $jug1$, return $true$.

The answer is $dfs(0, 0)$.

The time complexity is $O(x + y)$, and the space complexity is $O(x + y)$. Here, $x$ and $y$ are the sizes of $jug1Capacity$ and $jug2Capacity$ respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution:
    def canMeasureWater(self, x: int, y: int, z: int) -> bool:
        def dfs(i: int, j: int) -> bool:
            if (i, j) in vis:
                return False
            vis.add((i, j))
            if i == z or j == z or i + j == z:
                return True
            if dfs(x, j) or dfs(i, y) or dfs(0, j) or dfs(i, 0):
                return True
            a = min(i, y - j)
            b = min(j, x - i)
            return dfs(i - a, j + a) or dfs(i + b, j - b)

        vis = set()
        return dfs(0, 0)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
    private Set<Long> vis = new HashSet<>();
    private int x, y, z;

    public boolean canMeasureWater(int jug1Capacity, int jug2Capacity, int targetCapacity) {
        x = jug1Capacity;
        y = jug2Capacity;
        z = targetCapacity;
        return dfs(0, 0);
    }

    private boolean dfs(int i, int j) {
        long st = f(i, j);
        if (!vis.add(st)) {
            return false;
        }
        if (i == z || j == z || i + j == z) {
            return true;
        }
        if (dfs(x, j) || dfs(i, y) || dfs(0, j) || dfs(i, 0)) {
            return true;
        }
        int a = Math.min(i, y - j);
        int b = Math.min(j, x - i);
        return dfs(i - a, j + a) || dfs(i + b, j - b);
    }

    private long f(int i, int j) {
        return i * 1000000L + j;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
    bool canMeasureWater(int x, int y, int z) {
        using pii = pair<int, int>;
        stack<pii> stk;
        stk.emplace(0, 0);
        auto hash_function = [](const pii& o) { return hash<int>()(o.first)