Skip to content

1718. Construct the Lexicographically Largest Valid Sequence

Description

Given an integer n, find a sequence that satisfies all of the following:

  • The integer 1 occurs once in the sequence.
  • Each integer between 2 and n occurs twice in the sequence.
  • For every integer i between 2 and n, the distance between the two occurrences of i is exactly i.

The distance between two numbers on the sequence, a[i] and a[j], is the absolute difference of their indices, |j - i|.

Return the lexicographically largest sequence. It is guaranteed that under the given constraints, there is always a solution.

A sequence a is lexicographically larger than a sequence b (of the same length) if in the first position where a and b differ, sequence a has a number greater than the corresponding number in b. For example, [0,1,9,0] is lexicographically larger than [0,1,5,6] because the first position they differ is at the third number, and 9 is greater than 5.

 

Example 1:

Input: n = 3
Output: [3,1,2,3,2]
Explanation: [2,3,2,1,3] is also a valid sequence, but [3,1,2,3,2] is the lexicographically largest valid sequence.

Example 2:

Input: n = 5
Output: [5,3,1,4,3,5,2,4,2]

 

Constraints:

  • 1 <= n <= 20

Solutions

Solution 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution:
    def constructDistancedSequence(self, n: int) -> List[int]:
        def dfs(u):
            if u == n * 2:
                return True
            if path[u]:
                return dfs(u + 1)
            for i in range(n, 1, -1):
                if cnt[i] and u + i < n * 2 and path[u + i] == 0:
                    cnt[i] = 0
                    path[u] = path[u + i] = i
                    if dfs(u + 1):
                        return True
                    path[u] = path[u + i] = 0
                    cnt[i] = 2
            if cnt[1]:
                cnt[1], path[u] = 0, 1
                if dfs(u + 1):
                    return True
                path[u], cnt[1] = 0, 1
            return False

        path = [0] * (n * 2)
        cnt = [2] * (n * 2)
        cnt[1] = 1
        dfs(1)
        return path[1:]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class Solution {
    private int[] path;
    private int[] cnt;
    private int n;

    public int[] constructDistancedSequence(int n) {
        this.n = n;
        path = new int[n * 2];
        cnt = new int[n * 2];
        Arrays.fill(cnt, 2);
        cnt[1] = 1;
        dfs(1);
        int[] ans = new int[n * 2 - 1];
        for (int i = 0; i < ans.length; ++i) {
            ans[i] = path[i + 1];
        }
        return ans;
    }

    private boolean dfs(int u) {
        if (u == n * 2) {
            return true;
        }
        if (path[u] > 0) {
            return dfs(u + 1);
        }
        for (int i = n; i > 1; --i) {
            if (cnt[i] > 0 && u + i < n * 2 && path[u + i] == 0) {
                cnt[i] = 0;
                path[u] = i;
                path[u + i] = i;
                if (dfs(u + 1)) {
                    return true;
                }
                cnt[i] = 2;
                path[u] = 0;
                path[u + i] = 0;
            }
        }
        if (cnt[1] > 0) {
            path[u] = 1;
            cnt[1] = 0;
            if (dfs(u + 1)) {
                return true;
            }
            cnt[1] = 1;
            path[u] = 0;
        }
        return false;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
public:
    int n;
    vector<int> cnt, path;

    vector<int> constructDistancedSequence(int _n)