Skip to content

998. Maximum Binary Tree II

Description

A maximum tree is a tree where every node has a value greater than any other value in its subtree.

You are given the root of a maximum binary tree and an integer val.

Just as in the previous problem, the given tree was constructed from a list a (root = Construct(a)) recursively with the following Construct(a) routine:

  • If a is empty, return null.
  • Otherwise, let a[i] be the largest element of a. Create a root node with the value a[i].
  • The left child of root will be Construct([a[0], a[1], ..., a[i - 1]]).
  • The right child of root will be Construct([a[i + 1], a[i + 2], ..., a[a.length - 1]]).
  • Return root.

Note that we were not given a directly, only a root node root = Construct(a).

Suppose b is a copy of a with the value val appended to it. It is guaranteed that b has unique values.

Return Construct(b).

 

Example 1:

Input: root = [4,1,3,null,null,2], val = 5
Output: [5,4,null,1,3,null,null,2]
Explanation: a = [1,4,2,3], b = [1,4,2,3,5]

Example 2:

Input: root = [5,2,4,null,1], val = 3
Output: [5,2,4,null,1,null,3]
Explanation: a = [2,1,5,4], b = [2,1,5,4,3]

Example 3:

Input: root = [5,2,3,null,1], val = 4
Output: [5,2,4,null,1,3]
Explanation: a = [2,1,5,3], b = [2,1,5,3,4]

 

Constraints:

  • The number of nodes in the tree is in the range [1, 100].
  • 1 <= Node.val <= 100
  • All the values of the tree are unique.
  • 1 <= val <= 100

Solutions

Solution 1: Recursion

If $val$ is the maximum number, then make $val$ the new root node, and $root$ the left subtree of the new root node.

If $val$ is not the maximum number, since $val$ is the last appended number, it must be on the right side of $root$. Therefore, we can insert $val$ as a new node into the right subtree of $root$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the tree.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def insertIntoMaxTree(
        self, root: Optional[TreeNode], val: int
    ) -> Optional[TreeNode]:
        if root is None or root.val < val:
            return TreeNode(val, root)
        root.right = self.insertIntoMaxTree(root.right, val)
        return root
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode insertIntoMaxTree(TreeNode root, int val) {
        if (root == null || root.val < val) {
            return new TreeNode(val, root, null);
        }
        root.right = insertIntoMaxTree(root.right, val);
        return root;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* insertIntoMaxTree(TreeNode* root, int val) {
        if (!root || root->val < val) return new TreeNode(val, root, nullptr);
        root->right = insertIntoMaxTree(root->right, val);
        return root;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func insertIntoMaxTree(root *TreeNode, val int) *TreeNode {
    if root == nil || root.Val < val {
        return &TreeNode{val, root, nil}
    }
    root.Right = insertIntoMaxTree(root.Right, val)
    return root
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function insertIntoMaxTree(root: TreeNode | null, val: number): TreeNode | null {
    if (!root || root.val < val) {
        return new TreeNode(val, root);
    }
    root.right = insertIntoMaxTree(root.right, val);
    return root;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
<