Skip to content

674. Longest Continuous Increasing Subsequence

Description

Given an unsorted array of integers nums, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing.

A continuous increasing subsequence is defined by two indices l and r (l < r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l <= i < r, nums[i] < nums[i + 1].

 

Example 1:

Input: nums = [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5] with length 3.
Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element
4.

Example 2:

Input: nums = [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly
increasing.

 

Constraints:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

Solutions

Solution 1: One-pass Scan

We can traverse the array $nums$, using a variable $cnt$ to record the length of the current consecutive increasing sequence. Initially, $cnt = 1$.

Then, we start from index $i = 1$ and traverse the array $nums$ to the right. Each time we traverse, if $nums[i - 1] < nums[i]$, it means that the current element can be added to the consecutive increasing sequence, so we set $cnt = cnt + 1$, and then update the answer to $ans = \max(ans, cnt)$. Otherwise, it means that the current element cannot be added to the consecutive increasing sequence, so we set $cnt = 1$.

After the traversal ends, we return the answer $ans$.

The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        ans = cnt = 1
        for i, x in enumerate(nums[1:]):
            if nums[i] < x:
                cnt += 1
                ans = max(ans, cnt)
            else:
                cnt = 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int ans = 1;
        for (int i = 1, cnt = 1; i < nums.length; ++i) {
            if (nums[i - 1] < nums[i]) {
                ans = Math.max(ans, ++cnt);
            } else {
                cnt = 1;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        int ans = 1;
        for (int i = 1, cnt = 1; i < nums.size(); ++i) {
            if (nums[i - 1] < nums[i]) {
                ans = max(ans, ++cnt);
            } else {
                cnt = 1;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
func findLengthOfLCIS(nums []int) int {
    ans, cnt := 1, 1
    for i, x := range nums[1:] {
        if nums[i] < x {
            cnt++
            ans = max(ans, cnt)
        } else {
            cnt = 1
        }
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
function findLengthOfLCIS(nums: number[]): number {
    let [ans, cnt] = [1, 1];
    for (let i = 1; i < nums.length; ++i) {
        if (nums[i - 1] < nums[i]) {
            ans = Math.max(ans, ++cnt);
        } else {
            cnt = 1;
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
impl Solution {
    pub fn find_length_of_lcis(nums: Vec<i32>) -> i32 {
        let mut ans = 1;
        let mut cnt = 1;
        for i in 1..nums.len() {
            if nums[i - 1] < nums[i] {
                ans = ans.max(cnt + 1);
                cnt += 1;
            } else {
                cnt = 1;
            }
        }
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
    /**
     * @param Integer[] $nums
     * @return Integer
     */
    function findLengthOfLCIS($nums) {
        $ans = 1;
        $cnt = 1;
        for ($i = 1; $i < count($nums); ++$i) {
            if ($nums[$i - 1] < $nums[$i]) {
                $ans = max($ans, ++$cnt);
            } else {
                $cnt = 1;
            }
        }
        return $ans;
    }
}

Solution 2: Two Pointers

We can also use two pointers $i$ and $j$ to find each consecutive increasing sequence, and find the length of the longest consecutive increasing sequence as the answer.

The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.