2355. Maximum Number of Books You Can Take π
Description
You are given a 0-indexed integer array books
of length n
where books[i]
denotes the number of books on the ith
shelf of a bookshelf.
You are going to take books from a contiguous section of the bookshelf spanning from l
to r
where 0 <= l <= r < n
. For each index i
in the range l <= i < r
, you must take strictly fewer books from shelf i
than shelf i + 1
.
Return the maximum number of books you can take from the bookshelf.
Example 1:
Input: books = [8,5,2,7,9] Output: 19 Explanation: - Take 1 book from shelf 1. - Take 2 books from shelf 2. - Take 7 books from shelf 3. - Take 9 books from shelf 4. You have taken 19 books, so return 19. It can be proven that 19 is the maximum number of books you can take.
Example 2:
Input: books = [7,0,3,4,5] Output: 12 Explanation: - Take 3 books from shelf 2. - Take 4 books from shelf 3. - Take 5 books from shelf 4. You have taken 12 books so return 12. It can be proven that 12 is the maximum number of books you can take.
Example 3:
Input: books = [8,2,3,7,3,4,0,1,4,3] Output: 13 Explanation: - Take 1 book from shelf 0. - Take 2 books from shelf 1. - Take 3 books from shelf 2. - Take 7 books from shelf 3. You have taken 13 books so return 13. It can be proven that 13 is the maximum number of books you can take.
Constraints:
1 <= books.length <= 105
0 <= books[i] <= 105
Solutions
Solution 1: Simulation
We directly compare each row and column of the matrix $grid$. If they are equal, then it is a pair of equal row-column pairs, and we increment the answer by one.
The time complexity is $O(n^3)$, where $n$ is the number of rows or columns in the matrix $grid$. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|