2554. Maximum Number of Integers to Choose From a Range I
Description
You are given an integer array banned
and two integers n
and maxSum
. You are choosing some number of integers following the below rules:
- The chosen integers have to be in the range
[1, n]
. - Each integer can be chosen at most once.
- The chosen integers should not be in the array
banned
. - The sum of the chosen integers should not exceed
maxSum
.
Return the maximum number of integers you can choose following the mentioned rules.
Example 1:
Input: banned = [1,6,5], n = 5, maxSum = 6 Output: 2 Explanation: You can choose the integers 2 and 4. 2 and 4 are from the range [1, 5], both did not appear in banned, and their sum is 6, which did not exceed maxSum.
Example 2:
Input: banned = [1,2,3,4,5,6,7], n = 8, maxSum = 1 Output: 0 Explanation: You cannot choose any integer while following the mentioned conditions.
Example 3:
Input: banned = [11], n = 7, maxSum = 50 Output: 7 Explanation: You can choose the integers 1, 2, 3, 4, 5, 6, and 7. They are from the range [1, 7], all did not appear in banned, and their sum is 28, which did not exceed maxSum.
Constraints:
1 <= banned.length <= 104
1 <= banned[i], n <= 104
1 <= maxSum <= 109
Solutions
Solution 1: Greedy + Enumeration
We use the variable $s$ to represent the sum of the currently selected integers, and the variable $ans$ to represent the number of currently selected integers. We convert the array banned
into a hash table for easy determination of whether a certain integer is not selectable.
Next, we start enumerating the integer $i$ from $1$. If $s + i \leq maxSum$ and $i$ is not in banned
, then we can select the integer $i$, and add $i$ and $1$ to $s$ and $ans$ respectively.
Finally, we return $ans$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the given integer.
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|