Skip to content

2369. Check if There is a Valid Partition For The Array

Description

You are given a 0-indexed integer array nums. You have to partition the array into one or more contiguous subarrays.

We call a partition of the array valid if each of the obtained subarrays satisfies one of the following conditions:

  1. The subarray consists of exactly 2, equal elements. For example, the subarray [2,2] is good.
  2. The subarray consists of exactly 3, equal elements. For example, the subarray [4,4,4] is good.
  3. The subarray consists of exactly 3 consecutive increasing elements, that is, the difference between adjacent elements is 1. For example, the subarray [3,4,5] is good, but the subarray [1,3,5] is not.

Return true if the array has at least one valid partition. Otherwise, return false.

 

Example 1:

Input: nums = [4,4,4,5,6]
Output: true
Explanation: The array can be partitioned into the subarrays [4,4] and [4,5,6].
This partition is valid, so we return true.

Example 2:

Input: nums = [1,1,1,2]
Output: false
Explanation: There is no valid partition for this array.

 

Constraints:

  • 2 <= nums.length <= 105
  • 1 <= nums[i] <= 106

Solutions

We design a function $dfs(i)$, which represents whether there is a valid partition starting from index $i$. So the answer is $dfs(0)$.

The execution process of the function $dfs(i)$ is as follows:

  • If $i \ge n$, return $true$.
  • If the elements at index $i$ and $i+1$ are equal, we can choose to make $i$ and $i+1$ a subarray, and recursively call $dfs(i+2)$.
  • If the elements at index $i$, $i+1$ and $i+2$ are equal, we can choose to make $i$, $i+1$ and $i+2$ a subarray, and recursively call $dfs(i+3)$.
  • If the elements at index $i$, $i+1$ and $i+2$ increase by $1$ in turn, we can choose to make $i$, $i+1$ and $i+2$ a subarray, and recursively call $dfs(i+3)$.
  • If none of the above conditions are met, return $false$, otherwise return $true$.

That is:

$$ dfs(i) = \textit{OR} \begin{cases} true,&i \ge n\ dfs(i+2),&i+1 < n \textit{and} \textit{nums}[i] = \textit{nums}[i+1]\ dfs(i+3),&i+2 < n \textit{and} \textit{nums}[i] = \textit{nums}[i+1] = \textit{nums}[i+2]\ dfs(i+3),&i+2 < n \textit{and} \textit{nums}[i+1] - \textit{nums}[i] = 1 \textit{and} \textit{nums}[i+2] - \textit{nums}[i+1] = 1 \end{cases} $$

To avoid repeated calculations, we use the method of memoization search.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def validPartition(self, nums: List[int]) -> bool:
        @cache
        def dfs(i: int) -> bool:
            if i >= n:
                return True
            a = i + 1 < n and nums[i] == nums[i + 1]
            b = i + 2 < n and nums[i] == nums[i + 1] == nums[i + 2]
            c = (
                i + 2 < n
                and nums[i + 1] - nums[i] == 1
                and nums[i + 2] - nums[i + 1] == 1
            )
            return (a and dfs(i + 2)) or ((b or c) and dfs(i + 3))

        n = len(nums)
        return dfs(0)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
    private int n;
    private int[] nums;
    private Boolean[] f;

    public boolean validPartition(int[] nums) {
        n = nums.length;
        this.nums = nums;
        f = new Boolean[n];
        return dfs(0);
    }

    private boolean dfs(int i) {
        if (i >= n) {
            return true;
        }
        if (f[i] != null) {
            return f[i];
        }
        boolean a = i + 1 < n && nums[i] == nums[i + 1];
        boolean b = i + 2 < n && nums[i] == nums[i + 1] && nums[i + 1] == nums[i + 2];
        boolean c = i + 2 < n && nums[i + 1] - nums[i] == 1 && nums[i + 2] - nums[i + 1] == 1;
        return f[i] = ((a && dfs(i + 2)) || ((b || c) && dfs(i + 3)));
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    bool validPartition(vector<int>& nums) {
        n = nums.size();
        this->nums = nums;
        f.assign(n, -1);
        return dfs(0);
    }

private:
    int n;
    vector<int> f;
    vector<int> nums;

    bool dfs(int i) {
        if (i >= n) {
            return true;
        }
<