Skip to content

1536. Minimum Swaps to Arrange a Binary Grid

Description

Given an n x n binary grid, in one step you can choose two adjacent rows of the grid and swap them.

A grid is said to be valid if all the cells above the main diagonal are zeros.

Return the minimum number of steps needed to make the grid valid, or -1 if the grid cannot be valid.

The main diagonal of a grid is the diagonal that starts at cell (1, 1) and ends at cell (n, n).

 

Example 1:

Input: grid = [[0,0,1],[1,1,0],[1,0,0]]
Output: 3

Example 2:

Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0],[0,1,1,0]]
Output: -1
Explanation: All rows are similar, swaps have no effect on the grid.

Example 3:

Input: grid = [[1,0,0],[1,1,0],[1,1,1]]
Output: 0

 

Constraints:

  • n == grid.length == grid[i].length
  • 1 <= n <= 200
  • grid[i][j] is either 0 or 1

Solutions

Solution 1: Greedy

We process row by row. For the $i$-th row, the position of the last '1' must be less than or equal to $i$. We find the first row that meets the condition in $[i, n)$, denoted as $k$. Then, starting from the $k$-th row, we swap the adjacent two rows upwards until the $i$-th row.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the side length of the grid.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution:
    def minSwaps(self, grid: List[List[int]]) -> int:
        n = len(grid)
        pos = [-1] * n
        for i in range(n):
            for j in range(n - 1, -1, -1):
                if grid[i][j] == 1:
                    pos[i] = j
                    break
        ans = 0
        for i in range(n):
            k = -1
            for j in range(i, n):
                if pos[j] <= i:
                    ans += j - i
                    k = j
                    break
            if k == -1:
                return -1
            while k > i:
                pos[k], pos[k - 1] = pos[k - 1], pos[k]
                k -= 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
    public int minSwaps(int[][] grid) {
        int n = grid.length;
        int[] pos = new int[n];
        Arrays.fill(pos, -1);
        for (int i = 0; i < n; ++i) {
            for (int j = n - 1; j >= 0; --j) {
                if (grid[i][j] == 1) {
                    pos[i] = j;
                    break;
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int k = -1;
            for (int j = i; j < n; ++j) {
                if (pos[j] <= i) {
                    ans += j - i;
                    k = j;
                    break;
                }
            }
            if (k == -1) {
                return -1;
            }
            for (; k > i; --k) {
                int t = pos[k];
                pos[k] = pos[k - 1];
                pos[k - 1] = t;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
    int minSwaps(vector<vector<int>>& grid) {
        int n = grid.size();
        vector<int> pos(n, -1);
        for (int i = 0; i < n; ++i) {
            for (int j = n - 1; j >= 0; --j) {
                if (grid[i][j] == 1) {
                    pos[i] = j;
                    break;
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int k = -1;
            for (int j = i; j < n; ++j)