Skip to content

2976. Minimum Cost to Convert String I

Description

You are given two 0-indexed strings source and target, both of length n and consisting of lowercase English letters. You are also given two 0-indexed character arrays original and changed, and an integer array cost, where cost[i] represents the cost of changing the character original[i] to the character changed[i].

You start with the string source. In one operation, you can pick a character x from the string and change it to the character y at a cost of z if there exists any index j such that cost[j] == z, original[j] == x, and changed[j] == y.

Return the minimum cost to convert the string source to the string target using any number of operations. If it is impossible to convert source to target, return -1.

Note that there may exist indices i, j such that original[j] == original[i] and changed[j] == changed[i].

 

Example 1:

Input: source = "abcd", target = "acbe", original = ["a","b","c","c","e","d"], changed = ["b","c","b","e","b","e"], cost = [2,5,5,1,2,20]
Output: 28
Explanation: To convert the string "abcd" to string "acbe":
- Change value at index 1 from 'b' to 'c' at a cost of 5.
- Change value at index 2 from 'c' to 'e' at a cost of 1.
- Change value at index 2 from 'e' to 'b' at a cost of 2.
- Change value at index 3 from 'd' to 'e' at a cost of 20.
The total cost incurred is 5 + 1 + 2 + 20 = 28.
It can be shown that this is the minimum possible cost.

Example 2:

Input: source = "aaaa", target = "bbbb", original = ["a","c"], changed = ["c","b"], cost = [1,2]
Output: 12
Explanation: To change the character 'a' to 'b' change the character 'a' to 'c' at a cost of 1, followed by changing the character 'c' to 'b' at a cost of 2, for a total cost of 1 + 2 = 3. To change all occurrences of 'a' to 'b', a total cost of 3 * 4 = 12 is incurred.

Example 3:

Input: source = "abcd", target = "abce", original = ["a"], changed = ["e"], cost = [10000]
Output: -1
Explanation: It is impossible to convert source to target because the value at index 3 cannot be changed from 'd' to 'e'.

 

Constraints:

  • 1 <= source.length == target.length <= 105
  • source, target consist of lowercase English letters.
  • 1 <= cost.length == original.length == changed.length <= 2000
  • original[i], changed[i] are lowercase English letters.
  • 1 <= cost[i] <= 106
  • original[i] != changed[i]

Solutions

Solution 1: Floyd Algorithm

According to the problem description, we can consider each letter as a node, and the conversion cost between each pair of letters as a directed edge. We first initialize a $26 \times 26$ two-dimensional array $g$, where $g[i][j]$ represents the minimum cost of converting letter $i$ to letter $j$. Initially, $g[i][j] = \infty$, and if $i = j$, then $g[i][j] = 0$.

Next, we traverse the arrays $original$, $changed$, and $cost$. For each index $i$, we update the cost $cost[i]$ of converting $original[i]$ to $changed[i]$ to $g[original[i]][changed[i]]$, taking the minimum value.

Then, we use the Floyd algorithm to calculate the minimum cost between any two nodes in $g$. Finally, we traverse the strings $source$ and $target$. If $source[i] \neq target[i]$ and $g[source[i]][target[i]] \geq \infty$, it means that the conversion cannot be completed, so we return $-1$. Otherwise, we add $g[source[i]][target[i]]$ to the answer.

After the traversal ends, we return the answer.

The time complexity is $O(m + n + |\Sigma|^3)$, and the space complexity is $O(|\Sigma|^2)$. Where $m$ and $n$ are the lengths of the arrays $original$ and $source$ respectively; and $|\Sigma|$ is the size of the alphabet, that is, $|\Sigma| = 26$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution:
    def minimumCost(
        self,
        source: str,
        target: str,
        original: List[str],
        changed: List[str],
        cost: List[int],
    ) -> int:
        g = [[inf] * 26 for _ in range(26)]
        for i in range(26):
            g[i][i] = 0
        for x, y, z in zip(original, changed, cost):
            x = ord(x) - ord('a')
            y = ord(y) - ord('a')
            g[x][y] = min(g[x][y], z)
        for k in range(26):
            for i in range(26):
                for j in range(26):
                    g[i][j] = min(g[i][j], g[i][k] + g[k][j])
        ans = 0
        for a, b in zip(source, target):
            if a != b:
                x, y = ord(a) - ord('a'), ord(b) - ord('a')
                if g[x][y] >= inf:
                    return -1
                ans += g[x][y]
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
    public long minimumCost(
        String source, String target, char[] original, char[] changed, int[] cost) {
        final int inf = 1 << 29;
        int[][] g = new int[26][26];
        for (int i = 0; i < 26; ++i) {
            Arrays.fill(g[i], inf);
            g[i][i] = 0;
        }
        for (int i = 0; i < original.length; ++i) {
            int x = original[i] - 'a';
            int y = changed[i] - 'a';
            int z = cost[i];
            g[x][y] = Math.min(g[x][y], z);
        }
        for (int k = 0; k < 26; ++k) {
            for (int i = 0; i < 26; ++i) {
                for (int j = 0; j < 26; ++j) {
                    g[i][j] = Math.min(g[i