1766. Tree of Coprimes
Description
There is a tree (i.e., a connected, undirected graph that has no cycles) consisting of n
nodes numbered from 0
to n - 1
and exactly n - 1
edges. Each node has a value associated with it, and the root of the tree is node 0
.
To represent this tree, you are given an integer array nums
and a 2D array edges
. Each nums[i]
represents the ith
node's value, and each edges[j] = [uj, vj]
represents an edge between nodes uj
and vj
in the tree.
Two values x
and y
are coprime if gcd(x, y) == 1
where gcd(x, y)
is the greatest common divisor of x
and y
.
An ancestor of a node i
is any other node on the shortest path from node i
to the root. A node is not considered an ancestor of itself.
Return an array ans
of size n
, where ans[i]
is the closest ancestor to node i
such that nums[i]
and nums[ans[i]]
are coprime, or -1
if there is no such ancestor.
Example 1:
Input: nums = [2,3,3,2], edges = [[0,1],[1,2],[1,3]] Output: [-1,0,0,1] Explanation: In the above figure, each node's value is in parentheses. - Node 0 has no coprime ancestors. - Node 1 has only one ancestor, node 0. Their values are coprime (gcd(2,3) == 1). - Node 2 has two ancestors, nodes 1 and 0. Node 1's value is not coprime (gcd(3,3) == 3), but node 0's value is (gcd(2,3) == 1), so node 0 is the closest valid ancestor. - Node 3 has two ancestors, nodes 1 and 0. It is coprime with node 1 (gcd(3,2) == 1), so node 1 is its closest valid ancestor.
Example 2:
Input: nums = [5,6,10,2,3,6,15], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]] Output: [-1,0,-1,0,0,0,-1]
Constraints:
nums.length == n
1 <= nums[i] <= 50
1 <= n <= 105
edges.length == n - 1
edges[j].length == 2
0 <= uj, vj < n
uj != vj
Solutions
Solution 1: Preprocessing + Enumeration + Stack + Backtracking
Since the range of $nums[i]$ in the problem is $[1, 50]$, we can preprocess all the coprime numbers for each number and record them in the array $f$, where $f[i]$ represents all the coprime numbers of $i$.
Next, we can use a backtracking method to traverse the entire tree from the root node. For each node $i$, we can get all the coprime numbers of $nums[i]$ through the array $f$. Then we enumerate all the coprime numbers of $nums[i]$, find the ancestor node $t$ that has appeared and has the maximum depth, which is the nearest coprime ancestor node of $i$. Here we can use a stack array $stks$ of length $51$ to get each appeared value $v$ and its depth. The top element of each stack $stks[v]$ is the nearest ancestor node with the maximum depth.
The time complexity is $O(n \times M)$, and the space complexity is $O(M^2 + n)$. Where $n$ is the number of nodes, and $M$ is the maximum value of $nums[i]$, in this problem $M = 50$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|