2541. Minimum Operations to Make Array Equal II
Description
You are given two integer arrays nums1
and nums2
of equal length n
and an integer k
. You can perform the following operation on nums1
:
- Choose two indexes
i
andj
and incrementnums1[i]
byk
and decrementnums1[j]
byk
. In other words,nums1[i] = nums1[i] + k
andnums1[j] = nums1[j] - k
.
nums1
is said to be equal to nums2
if for all indices i
such that 0 <= i < n
, nums1[i] == nums2[i]
.
Return the minimum number of operations required to make nums1
equal to nums2
. If it is impossible to make them equal, return -1
.
Example 1:
Input: nums1 = [4,3,1,4], nums2 = [1,3,7,1], k = 3 Output: 2 Explanation: In 2 operations, we can transform nums1 to nums2. 1st operation: i = 2, j = 0. After applying the operation, nums1 = [1,3,4,4]. 2nd operation: i = 2, j = 3. After applying the operation, nums1 = [1,3,7,1]. One can prove that it is impossible to make arrays equal in fewer operations.
Example 2:
Input: nums1 = [3,8,5,2], nums2 = [2,4,1,6], k = 1 Output: -1 Explanation: It can be proved that it is impossible to make the two arrays equal.
Constraints:
n == nums1.length == nums2.length
2 <= n <= 105
0 <= nums1[i], nums2[j] <= 109
0 <= k <= 105
Solutions
Solution 1: Single Pass
We use a variable $x$ to record the difference in the number of additions and subtractions, and a variable $ans$ to record the number of operations.
We traverse the array, and for each position $i$, if $k=0$ and $a_i \neq b_i$, then it is impossible to make the two arrays equal, so we return $-1$. Otherwise, if $k \neq 0$, then $a_i - b_i$ must be a multiple of $k$, otherwise it is impossible to make the two arrays equal, so we return $-1$. Next, we update $x$ and $ans$.
Finally, if $x \neq 0$, then it is impossible to make the two arrays equal, so we return $-1$. Otherwise, we return $\frac{ans}{2}$.
The time complexity is $O(n)$, and the space complexity is $O(1)$, where $n$ is the length of the array.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|