Skip to content

2981. Find Longest Special Substring That Occurs Thrice I

Description

You are given a string s that consists of lowercase English letters.

A string is called special if it is made up of only a single character. For example, the string "abc" is not special, whereas the strings "ddd", "zz", and "f" are special.

Return the length of the longest special substring of s which occurs at least thrice, or -1 if no special substring occurs at least thrice.

A substring is a contiguous non-empty sequence of characters within a string.

 

Example 1:

Input: s = "aaaa"
Output: 2
Explanation: The longest special substring which occurs thrice is "aa": substrings "aaaa", "aaaa", and "aaaa".
It can be shown that the maximum length achievable is 2.

Example 2:

Input: s = "abcdef"
Output: -1
Explanation: There exists no special substring which occurs at least thrice. Hence return -1.

Example 3:

Input: s = "abcaba"
Output: 1
Explanation: The longest special substring which occurs thrice is "a": substrings "abcaba", "abcaba", and "abcaba".
It can be shown that the maximum length achievable is 1.

 

Constraints:

  • 3 <= s.length <= 50
  • s consists of only lowercase English letters.

Solutions

Solution 1: Binary Search + Sliding Window Counting

We notice that if there exists a special substring of length $x$ that appears at least three times, then a special substring of length $x-1$ must also exist. This exhibits a monotonicity, so we can use binary search to find the longest special substring.

We define the left boundary of the binary search as $l = 0$ and the right boundary as $r = n$, where $n$ is the length of the string. In each binary search, we take $mid = \lfloor \frac{l + r + 1}{2} \rfloor$. If a special substring of length $mid$ exists, we update the left boundary to $mid$. Otherwise, we update the right boundary to $mid - 1$. During the binary search, we use a sliding window to count the number of special substrings.

Specifically, we design a function $check(x)$ to indicate whether a special substring of length $x$ that appears at least three times exists.

In the function $check(x)$, we define a hash table or an array of length $26$ named $cnt$, where $cnt[i]$ represents the count of special substrings of length $x$ composed of the $i$-th lowercase letter. We traverse the string $s$. If the current character is $s[i]$, we move the pointer $j$ to the right until $s[j] \neq s[i]$. At this point, $s[i \cdots j-1]$ is a special substring of length $x$. We increase $cnt[s[i]]$ by $\max(0, j - i - x + 1)$, and then update the pointer $i$ to $j$.

After the traversal, we go through the array $cnt$. If there exists $cnt[i] \geq 3$, it means a special substring of length $x$ that appears at least three times exists, so we return $true$. Otherwise, we return $false$.

The time complexity is $O((n + |\Sigma|) \times \log n)$, and the space complexity is $O(|\Sigma|)$, where $n$ is the length of the string $s$, and $|\Sigma|$ represents the size of the character set. In this problem, the character set is lowercase English letters, so $|\Sigma| = 26$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution:
    def maximumLength(self, s: str) -> int:
        def check(x: int) -> bool:
            cnt = defaultdict(int)
            i = 0
            while i < n:
                j = i + 1
                while j < n and s[j] == s[i]:
                    j += 1
                cnt[s[i]] += max(0, j - i - x + 1)
                i = j
            return max(cnt.values()) >= 3

        n = len(s)
        l, r = 0, n
        while l < r:
            mid = (l + r + 1) >> 1
            if check(mid):
                l = mid
            else:
                r = mid - 1
        return -1 if l == 0 else l
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
    private String s;
    private int n;

    public int maximumLength(String s) {
        this.s = s;
        n = s.length();
        int l = 0, r = n;
        while (l < r) {
            int mid = (l + r + 1) >> 1;
            if (check(mid)) {
                l = mid;
            } else {
                r = mid - 1;
            }
        }
        return l == 0 ? -1 : l;
    }

    private boolean check(int x) {
        int[] cnt = new int[26];
        for (int i = 0; i < n;) {
            int j = i + 1;
            while (j < n && s.charAt(j) == s.charAt(i)) {
                j++;
            }
            int k = s.charAt(i) - 'a';
            cnt[k] += Math.max(0, j - i - x + 1);
            if (cnt[k] >= 3) {
                return true;
            }
            i = j;
        }
        return false;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public:
    int maximumLength(string s) {
        int n = s.size();
        int l = 0, r = n;
        auto check = [&](int x) {
            int cnt[26]{};
            for (int i = 0; i < n;) {
                int j = i + 1;
                while (j < n && s[j] == s[i]) {
                    ++j;
                }
                int k = s[i] - 'a';
                cnt[k] += max(0, j - i -