220. Contains Duplicate III
Description
You are given an integer array nums
and two integers indexDiff
and valueDiff
.
Find a pair of indices (i, j)
such that:
i != j
,abs(i - j) <= indexDiff
.abs(nums[i] - nums[j]) <= valueDiff
, and
Return true
if such pair exists or false
otherwise.
Example 1:
Input: nums = [1,2,3,1], indexDiff = 3, valueDiff = 0 Output: true Explanation: We can choose (i, j) = (0, 3). We satisfy the three conditions: i != j --> 0 != 3 abs(i - j) <= indexDiff --> abs(0 - 3) <= 3 abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
Example 2:
Input: nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3 Output: false Explanation: After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
Constraints:
2 <= nums.length <= 105
-109 <= nums[i] <= 109
1 <= indexDiff <= nums.length
0 <= valueDiff <= 109
Solutions
Solution 1: Sliding Window + Ordered Set
We maintain a sliding window of size $k$, and the elements in the window are kept in order.
We traverse the array nums
. For each element $nums[i]$, we look for the first element in the ordered set that is greater than or equal to $nums[i] - t$. If the element exists, and this element is less than or equal to $nums[i] + t$, it means we have found a pair of elements that meet the conditions, and we return true
. Otherwise, we insert $nums[i]$ into the ordered set, and if the size of the ordered set exceeds $k$, we need to remove the earliest added element from the ordered set.
The time complexity is $O(n \times \log k)$, where $n$ is the length of the array nums
. For each element, we need $O(\log k)$ time to find the element in the ordered set, and there are $n$ elements in total, so the total time complexity is $O(n \times \log k)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |