1855. Maximum Distance Between a Pair of Values
Description
You are given two non-increasing 0-indexed integer arrays nums1
ββββββ and nums2
ββββββ.
A pair of indices (i, j)
, where 0 <= i < nums1.length
and 0 <= j < nums2.length
, is valid if both i <= j
and nums1[i] <= nums2[j]
. The distance of the pair is j - i
ββββ.
Return the maximum distance of any valid pair (i, j)
. If there are no valid pairs, return 0
.
An array arr
is non-increasing if arr[i-1] >= arr[i]
for every 1 <= i < arr.length
.
Example 1:
Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5] Output: 2 Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4). The maximum distance is 2 with pair (2,4).
Example 2:
Input: nums1 = [2,2,2], nums2 = [10,10,1] Output: 1 Explanation: The valid pairs are (0,0), (0,1), and (1,1). The maximum distance is 1 with pair (0,1).
Example 3:
Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25] Output: 2 Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4). The maximum distance is 2 with pair (2,4).
Constraints:
1 <= nums1.length, nums2.length <= 105
1 <= nums1[i], nums2[j] <= 105
- Both
nums1
andnums2
are non-increasing.
Solutions
Solution 1: Binary Search
Assume the lengths of $nums1$ and $nums2$ are $m$ and $n$ respectively.
Traverse array $nums1$, for each number $nums1[i]$, perform a binary search for numbers in $nums2$ in the range $[i,n)$, find the last position $j$ that is greater than or equal to $nums1[i]$, calculate the distance between this position and $i$, and update the maximum distance value $ans$.
The time complexity is $O(m \times \log n)$, where $m$ and $n$ are the lengths of $nums1$ and $nums2$ respectively. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|