Tree
Depth-First Search
Binary Tree
Description
Given the root
of a binary tree, return the length of the diameter of the tree .
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root
.
The length of a path between two nodes is represented by the number of edges between them.
Example 1:
Input: root = [1,2,3,4,5]
Output: 3
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].
Example 2:
Input: root = [1,2]
Output: 1
Constraints:
The number of nodes in the tree is in the range [1, 104 ]
.
-100 <= Node.val <= 100
Solutions
Solution 1
Python3 Java C++ Go TypeScript Rust C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def diameterOfBinaryTree ( self , root : TreeNode ) -> int :
def dfs ( root ):
if root is None :
return 0
nonlocal ans
left , right = dfs ( root . left ), dfs ( root . right )
ans = max ( ans , left + right )
return 1 + max ( left , right )
ans = 0
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans ;
public int diameterOfBinaryTree ( TreeNode root ) {
ans = 0 ;
dfs ( root );
return ans ;
}
private int dfs ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int left = dfs ( root . left );
int right = dfs ( root . right );
ans = Math . max ( ans , left + right );
return 1 + Math . max ( left , right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int ans ;
int diameterOfBinaryTree ( TreeNode * root ) {
ans = 0 ;
dfs ( root );
return ans ;
}
int dfs ( TreeNode * root ) {
if ( ! root ) return 0 ;
int left = dfs ( root -> left );
int right = dfs ( root -> right );
ans = max ( ans , left + right );
return 1 + max ( left , right );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func diameterOfBinaryTree ( root * TreeNode ) int {
ans := 0
var dfs func ( root * TreeNode ) int
dfs = func ( root * TreeNode ) int {
if root == nil {
return 0
}
left , right := dfs ( root . Left ), dfs ( root . Right )
ans = max ( ans , left + right )
return 1 + max ( left , right )
}
dfs ( root )
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function diameterOfBinaryTree ( root : TreeNode | null ) : number {
let res = 0 ;
const dfs = ( root : TreeNode | null ) => {
if ( root == null ) {
return 0 ;
}
const { left , right } = root ;
const l = dfs ( left );
const r = dfs ( right );
res = Math . max ( res , l + r );
return Math . max ( l , r ) + 1