2407. Longest Increasing Subsequence II
Description
You are given an integer array nums
and an integer k
.
Find the longest subsequence of nums
that meets the following requirements:
- The subsequence is strictly increasing and
- The difference between adjacent elements in the subsequence is at most
k
.
Return the length of the longest subsequence that meets the requirements.
A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [4,2,1,4,3,4,5,8,15], k = 3 Output: 5 Explanation: The longest subsequence that meets the requirements is [1,3,4,5,8]. The subsequence has a length of 5, so we return 5. Note that the subsequence [1,3,4,5,8,15] does not meet the requirements because 15 - 8 = 7 is larger than 3.
Example 2:
Input: nums = [7,4,5,1,8,12,4,7], k = 5 Output: 4 Explanation: The longest subsequence that meets the requirements is [4,5,8,12]. The subsequence has a length of 4, so we return 4.
Example 3:
Input: nums = [1,5], k = 1 Output: 1 Explanation: The longest subsequence that meets the requirements is [1]. The subsequence has a length of 1, so we return 1.
Constraints:
1 <= nums.length <= 105
1 <= nums[i], k <= 105
Solutions
Solution 1: Segment Tree
We assume that $f[v]$ represents the length of the longest increasing subsequence ending with the number $v$.
We traverse each element $v$ in the array $nums$, with the state transition equation: $f[v] = \max(f[v], f[x])$, where the range of $x$ is $[v-k, v-1]$.
Therefore, we need a data structure to maintain the maximum value of the interval. It is not difficult to think of using a segment tree.
The segment tree divides the entire interval into multiple discontinuous subintervals, and the number of subintervals does not exceed $log(width)$. To update the value of an element, only $log(width)$ intervals need to be updated, and these intervals are all contained in a large interval that contains the element.
- Each node of the segment tree represents an interval;
- The segment tree has a unique root node, which represents the entire statistical range, such as $[1,N]$;
- Each leaf node of the segment tree represents an elementary interval of length $1$, $[x, x]$;
- For each internal node $[l,r]$, its left child is $[l,mid]$, and the right child is $[mid+1,r]$, where $mid = \left \lfloor \frac{l+r}{2} \right \rfloor$.
For this problem, the information maintained by the segment tree node is the maximum value within the interval range.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array $nums$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|