Skip to content

742. Closest Leaf in a Binary Tree πŸ”’

Description

Given the root of a binary tree where every node has a unique value and a target integer k, return the value of the nearest leaf node to the target k in the tree.

Nearest to a leaf means the least number of edges traveled on the binary tree to reach any leaf of the tree. Also, a node is called a leaf if it has no children.

 

Example 1:

Input: root = [1,3,2], k = 1
Output: 2
Explanation: Either 2 or 3 is the nearest leaf node to the target of 1.

Example 2:

Input: root = [1], k = 1
Output: 1
Explanation: The nearest leaf node is the root node itself.

Example 3:

Input: root = [1,2,3,4,null,null,null,5,null,6], k = 2
Output: 3
Explanation: The leaf node with value 3 (and not the leaf node with value 6) is nearest to the node with value 2.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • 1 <= Node.val <= 1000
  • All the values of the tree are unique.
  • There exist some node in the tree where Node.val == k.

Solutions

Solution 1: DFS + BFS

First, we use depth-first search to construct an undirected graph $g$, where $g[node]$ represents the set of nodes adjacent to the node $node$. Then we start a breadth-first search from node $k$ until we find a leaf node, which is the answer.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the number of nodes in the binary tree.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def findClosestLeaf(self, root: Optional[TreeNode], k: int) -> int:
        def dfs(root: Optional[TreeNode], fa: Optional[TreeNode]):
            if root:
                g[root].append(fa)
                g[fa].append(root)
                dfs(root.left, root)
                dfs(root.right, root)

        g = defaultdict(list)
        dfs(root, None)
        q = deque(node for node in g if node and node.val == k)
        vis = set(q)
        while 1:
            node = q.popleft()
            if node:
                if node.left == node.right:
                    return node.val
                for nxt in g[node]:
                    if nxt not in vis:
                        vis.add(nxt)
                        q.append(nxt)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private Map<TreeNode, List<TreeNode>> g = new HashMap<>();

    public int findClosestLeaf(TreeNode root, int k) {
        dfs(root, null);
        Deque<TreeNode> q = new LinkedList<>();
        Set<TreeNode> vis = new HashSet<>(q.size());
        for (TreeNode node : g.keySet()) {
            if (node != null && node.val == k) {
                vis.add(node);
                q.offer(node);
                break;
            }
        }
        while (true) {
            TreeNode node = q.poll();
            if (node != null) {
                if (node.left == node.right) {
                    return node.val;
                }
                for (TreeNode nxt : g.get(node)) {
                    if (vis.add(nxt)) {
                        q.offer(nxt);
                    }
                }
            }
        }
    }

    private void dfs(TreeNode root, TreeNode fa) {
        if (root != null) {
            g.computeIfAbsent(root, k -> new ArrayList<>()).add(fa);
            g.computeIfAbsent(fa, k -> new ArrayList<>()).add(root);
            dfs(root.left, root);
            dfs(root.right, root);
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39