1650. Lowest Common Ancestor of a Binary Tree III π
Description
Given two nodes of a binary tree p
and q
, return their lowest common ancestor (LCA).
Each node will have a reference to its parent node. The definition for Node
is below:
class Node { public int val; public Node left; public Node right; public Node parent; }
According to the definition of LCA on Wikipedia: "The lowest common ancestor of two nodes p and q in a tree T is the lowest node that has both p and q as descendants (where we allow a node to be a descendant of itself)."
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5 since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2 Output: 1
Constraints:
- The number of nodes in the tree is in the range
[2, 105]
. -109 <= Node.val <= 109
- All
Node.val
are unique. p != q
p
andq
exist in the tree.
Solutions
Solution 1: Hash Table
We use a hash table $vis$ to record all nodes on the path from node $p$ to the root node. Then we start from node $q$ and traverse towards the root node. If we encounter a node that exists in the hash table $vis$, then this node is the nearest common ancestor of $p$ and $q$, and we can return it directly.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
Solution 2: Two Pointers
We can use two pointers $a$ and $b$ to point to nodes $p$ and $q$ respectively, and then traverse towards the root node. When $a$ and $b$ meet, it is the nearest common ancestor of $p$ and $q$. Otherwise, if pointer $a$ traverses to the root node, then we let it point to node $q$, and do the same for pointer $b$. In this way, when the two pointers meet, it is the nearest common ancestor of $p$ and $q$.
The time complexity is $O(n)$, where $n$ is t