Skip to content

714. Best Time to Buy and Sell Stock with Transaction Fee

Description

You are given an array prices where prices[i] is the price of a given stock on the ith day, and an integer fee representing a transaction fee.

Find the maximum profit you can achieve. You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction.

Note:

  • You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
  • The transaction fee is only charged once for each stock purchase and sale.

 

Example 1:

Input: prices = [1,3,2,8,4,9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

Example 2:

Input: prices = [1,3,7,5,10,3], fee = 3
Output: 6

 

Constraints:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

Solutions

Solution 1: Memoization

We design a function $dfs(i, j)$, which represents the maximum profit that can be obtained starting from day $i$ with state $j$. Here, $j$ can take the values $0$ and $1$, representing not holding and holding a stock, respectively. The answer is $dfs(0, 0)$.

The execution logic of the function $dfs(i, j)$ is as follows:

If $i \geq n$, there are no more stocks to trade, so we return $0$.

Otherwise, we can choose not to trade, in which case $dfs(i, j) = dfs(i + 1, j)$. We can also choose to trade stocks. If $j \gt 0$, it means that we currently hold a stock and can sell it. In this case, $dfs(i, j) = prices[i] + dfs(i + 1, 0) - fee$. If $j = 0$, it means that we currently do not hold a stock and can buy one. In this case, $dfs(i, j) = -prices[i] + dfs(i + 1, 1)$. We take the maximum value as the return value of the function $dfs(i, j)$.

The answer is $dfs(0, 0)$.

To avoid redundant calculations, we use memoization to record the return value of $dfs(i, j)$ in an array $f$. If $f[i][j]$ is not equal to $-1$, it means that we have already calculated it, so we can directly return $f[i][j]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $prices$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        @cache
        def dfs(i: int, j: int) -> int:
            if i >= len(prices):
                return 0
            ans = dfs(i + 1, j)
            if j:
                ans = max(ans, prices[i] + dfs(i + 1, 0) - fee)
            else:
                ans = max(ans, -prices[i] + dfs(i + 1, 1))
            return ans

        return dfs(0, 0)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
    private Integer[][] f;
    private int[] prices;
    private int fee;

    public int maxProfit(int[] prices, int fee) {
        f = new Integer[prices.length][2];
        this.prices = prices;
        this.fee = fee;
        return dfs(0, 0);
    }

    private int dfs(int i, int j) {
        if (i >= prices.length) {
            return 0;
        }
        if (f[i][j] != null) {
            return f[i][j];
        }
        int ans = dfs(i + 1, j);
        if (j > 0) {
            ans = Math.max(ans, prices[i] + dfs(i + 1, 0) - fee);
        } else {
            ans = Math.max(ans, -prices[i] + dfs(i + 1, 1));
        }
        return f[i][j] = ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        int f[n][2];
        memset(f, -1, sizeof(f));
        function<int(int, int)> dfs = [&](int i, int j) {
            if (i >= prices.size()) {
                return 0;
            }
            if (f[i][j] != -1) {
                return f[i][j];
            }
            int ans = dfs(i + 1, j);
            if (j) {
                ans = max(ans, prices[i] + dfs(i + 1, 0) - fee);
            } else {
                ans = max(ans, -prices[i] + dfs(i + 1, 1));
            }
            return