Skip to content

611. Valid Triangle Number

Description

Given an integer array nums, return the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle.

 

Example 1:

Input: nums = [2,2,3,4]
Output: 3
Explanation: Valid combinations are: 
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3

Example 2:

Input: nums = [4,2,3,4]
Output: 4

 

Constraints:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

Solutions

Solution 1

1
2
3
4
5
6
7
8
9
class Solution:
    def triangleNumber(self, nums: List[int]) -> int:
        nums.sort()
        ans, n = 0, len(nums)
        for i in range(n - 2):
            for j in range(i + 1, n - 1):
                k = bisect_left(nums, nums[i] + nums[j], lo=j + 1) - 1
                ans += k - j
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
    public int triangleNumber(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int res = 0;
        for (int i = n - 1; i >= 2; --i) {
            int l = 0, r = i - 1;
            while (l < r) {
                if (nums[l] + nums[r] > nums[i]) {
                    res += r - l;
                    --r;
                } else {
                    ++l;
                }
            }
        }
        return res;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int ans = 0, n = nums.size();
        for (int i = 0; i < n - 2; ++i) {
            for (int j = i + 1; j < n - 1; ++j) {
                int k = lower_bound(nums.begin() + j + 1, nums.end(), nums[i] + nums[j]) - nums.begin() - 1;
                ans += k - j;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
func triangleNumber(nums []int) int {
    sort.Ints(nums)
    ans := 0
    for i, n := 0, len(nums); i < n-2; i++ {
        for j := i + 1; j < n-1; j++ {
            left, right := j+1, n
            for left < right {
                mid := (left + right) >> 1
                if nums[mid] >= nums[i]+nums[j] {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            ans += left - j - 1
        }
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
function triangleNumber(nums: number[]): number {
    nums.sort((a, b) => a - b);
    let n = nums.length;
    let