Skip to content

1240. Tiling a Rectangle with the Fewest Squares

Description

Given a rectangle of size n x m, return the minimum number of integer-sided squares that tile the rectangle.

 

Example 1:

Input: n = 2, m = 3
Output: 3
Explanation: 3 squares are necessary to cover the rectangle.
2 (squares of 1x1)
1 (square of 2x2)

Example 2:

Input: n = 5, m = 8
Output: 5

Example 3:

Input: n = 11, m = 13
Output: 6

 

Constraints:

  • 1 <= n, m <= 13

Solutions

Solution 1: Recursive Backtracking + State Compression

We can perform recursive backtracking by position, during which we use a variable $t$ to record the current number of tiles used.

  • If $j = m$, i.e., the $i$-th row has been completely filled, then we recurse to the next row, i.e., $(i + 1, 0)$.
  • If $i = n$, it means that all positions have been filled, we update the answer and return.
  • If the current position $(i, j)$ has been filled, then directly recurse to the next position $(i, j + 1)$.
  • Otherwise, we enumerate the maximum square side length $w$ that the current position $(i, j)$ can fill, and fill all positions from $(i, j)$ to $(i + w - 1, j + w - 1)$, then recurse to the next position $(i, j + w)$. When backtracking, we need to clear all positions from $(i, j)$ to $(i + w - 1, j + w - 1)$.

Since each position only has two states: filled or not filled, we can use an integer to represent the current state. We use an integer array $filled$ of length $n$, where $filled[i]$ represents the state of the $i$-th row. If the $j$-th bit of $filled[i]$ is $1$, it means that the $i$-th row and the $j$-th column have been filled, otherwise it means not filled.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution:
    def tilingRectangle(self, n: int, m: int) -> int:
        def dfs(i: int, j: int, t: int):
            nonlocal ans
            if j == m:
                i += 1
                j = 0
            if i == n:
                ans = t
                return
            if filled[i] >> j & 1:
                dfs(i, j + 1, t)
            elif t + 1 < ans:
                r = c = 0
                for k in range(i, n):
                    if filled[k] >> j & 1:
                        break
                    r += 1
                for k in range(j, m):
                    if filled[i] >> k & 1:
                        break
                    c += 1
                mx = r if r < c else c
                for w in range(1, mx + 1):
                    for k in range(w):
                        filled[i + w - 1] |= 1 << (j + k)
                        filled[i + k] |= 1 << (j + w - 1)
                    dfs(i, j + w, t + 1)
                for x in range(i, i + mx):
                    for y in range(j, j + mx):
                        filled[x] ^= 1 << y

        ans = n * m
        filled = [0] * n
        dfs(0, 0, 0)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class Solution {
    private int n;
    private int m;
    private int[] filled;
    private int ans;

    public int tilingRectangle(int n, int m) {
        this.n = n;
        this.m = m;
        ans = n * m;
        filled = new int[n];
        dfs(0, 0, 0);
        return ans;
    }

    private void dfs(int i, int j, int t) {
        if (j == m) {
            ++i;
            j = 0;
        }
        if (i == n) {
            ans = t;
            return;
        }
        if ((filled[i] >> j & 1) == 1) {
            dfs(i, j + 1, t);
        } else if (t + 1 < ans) {
            int r = 0, c = 0;
            for (int k = i; k < n; ++k) {
                if ((filled[k] >> j & 1)