Skip to content

973. K Closest Points to Origin

Description

Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).

The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2).

You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in).

 

Example 1:

Input: points = [[1,3],[-2,2]], k = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], k = 2
Output: [[3,3],[-2,4]]
Explanation: The answer [[-2,4],[3,3]] would also be accepted.

 

Constraints:

  • 1 <= k <= points.length <= 104
  • -104 <= xi, yi <= 104

Solutions

Solution 1: Custom Sorting

We sort all points by their distance from the origin in ascending order, and then take the first $k$ points.

The time complexity is $O(n \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $\textit{points}$.

1
2
3
4
class Solution:
    def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
        points.sort(key=lambda p: hypot(p[0], p[1]))
        return points[:k]
1
2
3
4
5
6
7
class Solution {
    public int[][] kClosest(int[][] points, int k) {
        Arrays.sort(
            points, (p1, p2) -> Math.hypot(p1[0], p1[1]) - Math.hypot(p2[0], p2[1]) > 0 ? 1 : -1);
        return Arrays.copyOfRange(points, 0, k);
    }
}
1
2
3
4
5
6
7
8
9
class Solution {
public:
    vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
        sort(points.begin(), points.end(), [](const vector<int>& p1, const vector<int>& p2) {
            return hypot(p1[0], p1[1]) < hypot(p2[0], p2[1]);
        });
        return vector<vector<int>>(points.begin(), points.begin() + k);
    }
};
1
2
3
4
5
6
func kClosest(points [][]int, k int) [][]int {
    sort.Slice(points, func(i, j int) bool {
        return math.Hypot(float64(points[i][0]), float64(points[i][1])) < math.Hypot(float64(points[j][0]), float64(points[j][1]))
    })
    return points[:k]
}
1
2
3
4
function kClosest(points: number[][], k: number): number[][] {
    points.sort((a, b) => Math.hypot(a[0], a[1]) - Math.hypot(b[0], b[1]));
    return points.slice(0, k);
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
impl Solution {
    pub fn k_closest(mut points: Vec<Vec<i32>>, k: i32) -> Vec<Vec<i32>> {
        points.sort_by(|a, b| {
            let dist_a = f64::hypot(a[0] as f64, a[1] as f64);
            let dist_b = f64::hypot(b[0] as f64, b[1] as f64);
            dist_a.partial_cmp(&dist_b).unwrap()
        });
        points.into_iter().take(k as usize).collect()
    }
}

Solution 2: Priority Queue (Max Heap)

We can use a priority queue (max heap) to maintain the $k$ closest points to the origin.

The time complexity is $O(n \times \log k)$, and the space complexity is $O(k)$. Here, $n$ is the length of the array $\textit{points}$.

1
2
3
4
5
6
7
8
9
class Solution:
    def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
        max_q = []
        for i, (x, y) in enumerate(points):
            dist = math.hypot(x, y)
            heappush(max_q, (-dist, i))
            if len(max_q) > k:
                heappop(max_q)
        return [points[i] for _, i in max_q]