1504. Count Submatrices With All Ones
Description
Given an m x n
binary matrix mat
, return the number of submatrices that have all ones.
Example 1:
Input: mat = [[1,0,1],[1,1,0],[1,1,0]] Output: 13 Explanation: There are 6 rectangles of side 1x1. There are 2 rectangles of side 1x2. There are 3 rectangles of side 2x1. There is 1 rectangle of side 2x2. There is 1 rectangle of side 3x1. Total number of rectangles = 6 + 2 + 3 + 1 + 1 = 13.
Example 2:
Input: mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]] Output: 24 Explanation: There are 8 rectangles of side 1x1. There are 5 rectangles of side 1x2. There are 2 rectangles of side 1x3. There are 4 rectangles of side 2x1. There are 2 rectangles of side 2x2. There are 2 rectangles of side 3x1. There is 1 rectangle of side 3x2. Total number of rectangles = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24.
Constraints:
1 <= m, n <= 150
mat[i][j]
is either0
or1
.
Solutions
Solution 1: Enumeration + Prefix Sum
We can enumerate the bottom-right corner $(i, j)$ of the matrix, and then enumerate the first row $k$ upwards. The width of the matrix with $(i, j)$ as the bottom-right corner in each row is $\min_{k \leq i} \textit{g}[k][j]$, where $\textit{g}[k][j]$ represents the width of the matrix with $(k, j)$ as the bottom-right corner in the $k$-th row.
Therefore, we can preprocess a 2D array $g[i][j]$, where $g[i][j]$ represents the number of consecutive $1$s from the $j$-th column to the left in the $i$-th row.
The time complexity is $O(m^2 \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the matrix, respectively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|